32 research outputs found

    Constraining the dark energy with galaxy clusters X-ray data

    Full text link
    The equation of state characterizing the dark energy component is constrained by combining Chandra observations of the X-ray luminosity of galaxy clusters with independent measurements of the baryonic matter density and the latest measurements of the Hubble parameter as given by the HST key project. By assuming a spatially flat scenario driven by a "quintessence" component with an equation of state px=ωρxp_x = \omega \rho_x we place the following limits on the cosmological parameters ω\omega and Ωm\Omega_{\rm{m}}: (i) 1ω0.55-1 \leq \omega \leq -0.55 and Ωm=0.320.014+0.027\Omega_{\rm m} = 0.32^{+0.027}_{-0.014} (1σ\sigma) if the equation of state of the dark energy is restricted to the interval 1ω<0-1 \leq \omega < 0 (\emph{usual} quintessence) and (ii) ω=1.290.792+0.686\omega = -1.29^{+0.686}_{-0.792} and Ωm=0.310.034+0.037\Omega_{\rm{m}} = 0.31^{+0.037}_{-0.034} (1σ1\sigma) if ω\omega violates the null energy condition and assume values <1< -1 (\emph{extended} quintessence or ``phantom'' energy). These results are in good agreement with independent studies based on supernovae observations, large-scale structure and the anisotropies of the cosmic background radiation.Comment: 6 pages, 4 figures, LaTe

    Constraining the cosmic equation of state from old galaxies at high redshift

    Get PDF
    New limits on the cosmic equation of state are derived from age measurements of three recently reported old high redshift galaxies (OHRG). The results are based on a flat FRW type cosmological model driven by nonrelativistic matter plus a smooth component parametrized by its equation of state px=ωρxp_{x} = \omega\rho_{x} (ω1\omega \geq -1). The range of ω\omega is strongly dependent on the matter density parameter. For ΩM0.3\Omega_{M} \sim 0.3, as indicated from dynamical measurements, the age estimates of the OHRG restricts the cosmic parameter to ω0.27\omega\leq - 0.27. However, if ΩM\Omega_{M} is the one suggested by some studies of field galaxies, i.e, ΩM0.5\Omega_{M} \simeq 0.5, only a cosmological constant (ω=1\omega=-1) may be compatible with these data.Comment: 4 pages, 1 figure, MNRA

    Cosmological consequences of a Chaplygin gas dark energy

    Get PDF
    A combination of recent observational results has given rise to what is currently known as the dark energy problem. Although several possible candidates have been extensively discussed in the literature to date the nature of this dark energy component is not well understood at present. In this paper we investigate some cosmological implications of another dark energy candidate: an exotic fluid known as the Chaplygin gas, which is characterized by an equation of state p=A/ρp = -A/\rho, where AA is a positive constant. By assuming a flat scenario driven by non-relativistic matter plus a Chaplygin gas dark energy we study the influence of such a component on the statistical properties of gravitational lenses. A comparison between the predicted age of the universe and the latest age estimates of globular clusters is also included and the results briefly discussed. In general, we find that the behavior of this class of models may be interpreted as an intermediary case between the standard and Λ\LambdaCDM scenarios.Comment: 7 pages, 5 figures, to appear in Phys. Rev.
    corecore