5 research outputs found

    Quantum inverse scattering and the lambda deformed principal chiral model

    Get PDF
    The lambda model is a one parameter deformation of the principal chiral model that arises when regularizing the non-compactness of a non-abelian T dual in string theory. It is a current-current deformation of a WZW model that is known to be integrable at the classical and quantum level. The standard techniques of the quantum inverse scattering method cannot be applied because the Poisson bracket is non ultra-local. Inspired by an approach of Faddeev and Reshetikhin, we show that in this class of models, there is a way to deform the symplectic structure of the theory leading to a much simpler theory that is ultra-local and can be quantized on the lattice whilst preserving integrability. This lattice theory takes the form of a generalized spin chain that can be solved by standard algebraic Bethe Ansatz techniques. We then argue that the IR limit of the lattice theory lies in the universality class of the lambda model implying that the spin chain provides a way to apply the quantum inverse scattering method to this non ultra-local theory. This points to a way of applying the same ideas to other lambda models and potentially the string world-sheet theory in the gauge-gravity correspondence.Comment: 49 Page

    Quantum anisotropic sigma and lambda models as spin chains

    Get PDF
    We consider lambda and anisotropic deformations of the \SU(2) principal chiral model and show how they can be quantized in the Hamiltonian formalism on a lattice as a suitable spin chain. The spin chain is related to the higher spin XXZ Heisenberg chain and can be solved by using the Bethe Ansatz. This yields the spectrum and S-matrix of the excitations. In particular, we find the S-matrix in the gapped anti-ferromagnetic regime. In this regime, a continuum limit does not exist and this suggests that the field theories in this regime, precisely ones with a cyclic RG like the Yang-Baxter deformations, may only exist as effective theories. In a certain limit, we show that the XXZ type lambda model gives the symmetric space \SU(2)/\U(1) lambda model and, hence, we are able to find its spectrum and S-matrix and show that it gives the S-matrix of the O(3)\text{O}(3) sigma model in the appropriate limit. Finally, we show the full consistency of the S-matrix and the Lagrangian formulations of the lambda model, by coupling to a conserved charge and computing the way the ground state energy changes in both pictures

    Beta function of k deformed AdS5 × S 5 string theory

    Get PDF
    We calculate the one loop beta function for the would-be marginal coupling on the world sheet of the k deformed sigma models associated to a quantum group with q=exp(i pi/k). This includes the bosonic principal chiral models and symmetric space sigma models but also the k deformed semi-symmetric space sigma model describing strings in a deformation of AdS_5 x S^5. The world sheet sigma model is a current-current deformation of the gauged WZW model for the supergroup PSU(2,2|4) with level k. In the string theory context the beta function is shown to vanish because of the vanishing of the Killing form of PSU(2,2|4) which is another piece of evidence that the k deformed theories define consistent string theories.Comment: 26 pages, some typos correcte

    Giant magnons of string theory in the lambda background

    Get PDF
    The analogues of giant magnon configurations are studied on the string world sheet in the lambda background. This is a discrete deformation of the AdS(5)xS(5) background that preserves the integrability of the world sheet theory. Giant magnon solutions are generated using the dressing method and their dispersion relation is found. This reduces to the usual dyonic giant magnon dispersion relation in the appropriate limit and becomes relativistic in another limit where the lambda model becomes the generalized sine-Gordon theory of the Pohlmeyer reduction. The scattering of giant magnons is then shown in the semi-classical limit to be described by the quantum S-matrix that is a quantum group deformation of the conventional giant magnon S-matrix. It is further shown that in the small g limit, a sector of the S-matrix is related to the XXZ spin chain whose spectrum matches the spectrum of magnon bound states.Comment: 53 pages, 6 figures, final version to appear in JHE

    Yang Baxter and anisotropic sigma and lambda models, cyclic RG and exact S-matrices

    Get PDF
    Integrable deformation of SU(2) sigma and lambda models are considered at the classical and quantum levels. These are the Yang-Baxter and XXZ-type anisotropic deformations. The XXZ type deformations are UV safe in one regime, while in another regime, like the Yang-Baxter deformations, they exhibit cyclic RG behaviour. The associated affine quantum group symmetry, realised classically at the Poisson bracket level, has q a complex phase in the UV safe regime and q real in the cyclic RG regime, where q is an RG invariant. Based on the symmetries and RG flow we propose exact factorisable S-matrices to describe the scattering of states in the lambda models, from which the sigma models follow by taking a limit and non-abelian T-duality. In the cyclic RG regimes, the S-matrices are periodic functions of rapidity, at large rapidity, and in the Yang-Baxter case violate parity
    corecore