4 research outputs found

    Controlling Atom-Photon Bound States in an Array of Josephson-Junction Resonators

    Get PDF
    Engineering the electromagnetic environment of a quantum emitter gives rise to a plethora of exotic light -matter interactions. In particular, photonic lattices can seed long-lived atom-photon bound states inside photonic band gaps. Here, we report on the concept and implementation of a novel microwave architecture consisting of an array of compact superconducting resonators in which we have embedded two frequency -tunable artificial atoms. We study the atom-field interaction and access previously unexplored coupling regimes, in both the single-and double-excitation subspace. In addition, we demonstrate coherent interactions between two atom-photon bound states, in both resonant and dispersive regimes, that are suitable for the implementation of SWAP and CZ two-qubit gates. The presented architecture holds promise for quantum simulation with tunable-range interactions and photon transport experiments in the nonlinear regime

    Valley-hybridized gate-tunable 1D exciton confinement in MoSe2

    Full text link
    Controlling excitons at the nanoscale in semiconductor materials represents a formidable challenge in the fields of quantum photonics and optoelectronics. Achieving this control holds great potential for unlocking strong exciton-exciton interaction regimes, enabling exciton-based logic operations, exploring exotic quantum phases of matter, facilitating deterministic positioning and tuning of quantum emitters, and designing advanced optoelectronic devices. Monolayers of transition metal dichalcogenides (TMDs) offer inherent two-dimensional confinement and possess significant binding energies, making them particularly promising candidates for achieving electric-field-based confinement of excitons without dissociation. While previous exciton engineering strategies have predominantly focused on local strain gradients, the recent emergence of electrically confined states in TMDs has paved the way for novel approaches. Exploiting the valley degree of freedom associated with these confined states further broadens the prospects for exciton engineering. Here, we show electric control of light polarization emitted from one-dimensional (1D) quantum confined states in MoSe2. By employing non-uniform in-plane electric fields, we demonstrate the in-situ tuning of the trapping potential and reveal how gate-tunable valley-hybridization gives rise to linearly polarized emission from these localized states. Remarkably, the polarization of the localized states can be entirely engineered through either the spatial geometry of the 1D confinement potential or the application of an out-of-plane magnetic field

    Extensible quantum simulation architecture based on atom-photon bound states in an array of high-impedance resonators

    No full text
    Engineering the electromagnetic environment of a quantum emitter gives rise to a plethora of exotic light-matter interactions. In particular, photonic lattices can seed long-lived atom-photon bound states inside photonic band gaps. Here we report on the concept and implementation of anovel microwave architecture consisting of an array of compact, high-impedance superconducting resonators forming a 1 GHz-wide pass band, in which we have embedded two frequency-tuneable artificial atoms. We study the atom-field interaction and access previously unexplored couplingregimes, in both the single- and double-excitation subspace. In addition, we demonstrate coherent interactions between two atom-photon bound states, in both resonant and dispersive regimes, that are suitable for the implementation of SWAP and CZ two-qubit gates. The presented architecture holds\ua0 promise for quantum simulation with tuneable-range interactions and photon transport experiments in nonlinear regim
    corecore