45 research outputs found
Long-term variations in global sea level extremes
Decadal to multidecadal variations in sea level extremes unrelated to mean sea level changes have been investigated using long tide gauge records distributed worldwide. A state space approach has been applied that provides robust solutions and uncertainties of the time evolving characteristics of extremes, allowing for data gaps and uneven sampling, both common features of historical sea level time series. Two different models have been formulated for the intensity and for the occurrence of extreme sea level events and have been applied independently to each tide gauge record. Our results reveal two key findings: first, the intensity and the frequency of occurrence of extreme sea levels unrelated to mean sea level vary coherently on decadal scales in most of the sites examined (63 out of 77) and, second, extreme sea level changes are regionally consistent, thus pointing toward a common large-scale forcing. This variability of extremes associated with climate drivers should be considered in the framework of climate change studies
Mean sea level variability in the North Sea: Processes and implications
Mean sea level (MSL) variations across a range of time scales are examined for the North Sea under the consideration of different forcing factors since the late 19th century. We use multiple linear regression models, which are validated for the second half of the 20th century against the output of a tide+surge model, to determine the barotropic response of the ocean to fluctuations in atmospheric forcing. We find that local atmospheric forcing mainly initiates MSL variability on time scales up to a few years, with the inverted barometric effect dominating the variability along the UK and Norwegian coastlines and wind controlling the MSL variability in the south from Belgium up to Denmark. On decadal time scales, MSL variability mainly reflects steric changes, which are largely forced remotely. A spatial correlation analysis of altimetry observations and gridded steric heights suggests evidence for a coherent signal extending from the Norwegian shelf down to the Canary Islands. This fits with the theory of longshore wind forcing along the eastern boundary of the North Atlantic causing coastally trapped waves to propagate over thousands of kilometers along the continental slope. Implications of these findings are assessed with statistical Monte-Carlo experiments. It is demonstrated that the removal of known variability increases the signal to noise ratio with the result that: (i) linear trends can be estimated more accurately; (ii) possible accelerations (as expected, e.g., due to anthropogenic climate change) can be detected much earlier. Such information is of crucial importance for anticipatory coastal management, engineering, and planning
Sea level changes at Tenerife Island (NE Tropical Atlantic) since 1927
Hourly sea level observations measured by five tide gauges at Santa Cruz harbor (Tenerife Island), in the Northeastern Tropical Atlantic, have been merged to build a consistent and almost continuous sea level record starting in 1927. Datum continuity was ensured using high precision leveling information. The time series underwent a detailed quality control in order to remove outliers, time drifts, and datum shifts. The resulting sea level record was then used to describe the low frequency (interannual to decadal) sea level variability at Tenerife. It was found that at interannual and longer time scales, the observed sea level changes are primarily driven by steric sea level variations. Such steric changes are originated by coastal trapped waves induced by longshore winds along the continental coast and propagate poleward. Observed sea level rise at Tenerife was 2.09?±?0.04 mm/yr since 1927. According to the hydrographic observations in the area, only half of this trend was attributed to steric sea level changes for the top 500 m, at least since 1950
Monitoring sea level in the coastal zone with coastal altimetry and tide gauges
We examine the issue of sustained measurements of sea level in the coastal zone, first by summarizing the long-term observations from tide gauges, then showing how those are now complemented by improved altimetry products in the coastal ocean. We present some of the progresses in coastal altimetry, both from dedicated reprocessing of the radar waveforms and from the development of improved corrections for the atmospheric effects. This trend towards better altimetric data at the coast comes also from technological innovations such as Ka-band altimetry and SAR altimetry, and we discuss the advantages deriving from the AltiKa Ka-band altimeter and the SIRAL altimeter on CryoSat-2 that can be operated in SAR mode. A case study along the UK coast demonstrates the good agreement between coastal altimetry and tide gauge observations, with RMSD's as low as 4 cm at many stations, allowing the characterization of the annual cycle of sea level along the UK coasts. Finally we examine the evolution of the sea level trend from the open to the coastal ocean along the Western coast of Africa, comparing standard and coastally-improved products. Different products give different sea level trend profiles, so the recommendation is that additional efforts are needed to study sea level trends in the coastal zone from past and present altimeters. Further improvements are expected from more refined processing and screening of data, but in particular from the constant improvements in the geophysical corrections
Trends in Europe storm surge extremes match the rate of sea-level rise
Coastal communities across the world are already feeling the disastrous impacts of climate change through variations in extreme sea levels1. These variations reflect the combined effect of sea-level rise and changes in storm surge activity. Understanding the relative importance of these two factors in altering the likelihood of extreme events is crucial to the success of coastal adaptation measures. Existing analyses of tide gauge records2,3,4,5,6,7,8,9,10 agree that sea-level rise has been a considerable driver of trends in sea-level extremes since at least 1960. However, the contribution from changes in storminess remains unclear, owing to the difficulty of inferring this contribution from sparse data and the consequent inconclusive results that have accumulated in the literature11,12. Here we analyse tide gauge observations using spatial Bayesian methods13 to show that, contrary to current thought, trends in surge extremes and sea-level rise both made comparable contributions to the overall change in extreme sea levels in Europe since 1960 . We determine that the trend pattern of surge extremes reflects the contributions from a dominant north–south dipole associated with internal climate variability and a single-sign positive pattern related to anthropogenic forcing. Our results demonstrate that both external and internal influences can considerably affect the likelihood of surge extremes over periods as long as 60 years, suggesting that the current coastal planning practice of assuming stationary surge extremes1,14 might be inadequate
Coherent modulation of the sea-level annual cycle in the United States by Atlantic Rossby waves
Changes in the sea-level annual cycle (SLAC) can have profound impacts on coastal areas, including increased flooding risk and ecosystem alteration, yet little is known about the magnitude and drivers of such changes. Here we show, using novel Bayesian methods, that there are significant decadal fluctuations in the amplitude of the SLAC along the United States Gulf and Southeast coasts, including an extreme event in 2008–2009 that is likely (probability ≥68%) unprecedented in the tide-gauge record. Such fluctuations are coherent along the coast but decoupled from deep-ocean changes. Through the use of numerical and analytical ocean models, we show that the primary driver of these fluctuations involves incident Rossby waves that generate fast western-boundary waves. These Rossby waves project onto the basin-wide upper mid-ocean transport (top 1000 m) leading to a link with the SLAC, wherein larger SLAC amplitudes coincide with enhanced transport variability
Influence of 1997-98’ El Niño event on the planktonic communities from The Alboran Sea (Western Mediterranean)
The Alboran Sea is the westernmost basin of the Mediterranean Sea. Its particular location, as entrance of the
Atlantic Surface Water (ASW) into the Mediterranean, has led to an intense paleoceanographic and
paleoclimatic research. Nevertheless, only a limited number of studies provide information related to the
dynamics and ecological characteristics of the downward particle flux. In order to determine the influence of
seasonal oceanographic changes on the export of particles in the Alboran Sea, one mooring line, ALB-5-F,
was deployed from July 1997 to May 1998 at 35º55.47’N/01º30.77’W. The mooring location was under the
influence of the Almeria-Oran Front (AOF), which is formed by the interaction between the Atlantic jet and
the denser and more saline Mediterranean waters. Information based on SeaWIFS images of chlorophyll-a
concentration, current-meter, and meteorological data on wind direction and intensity were used.
The annual oceanographic pattern of the AOF during the studied period was directly related to the evolution
of the Western Anticyclonic Gyre (WAG) and to the 1997-98’ El Niño Event. Detailed analyses of the
planktonic foraminifera, diatom and phytolith fluxes reflect seasonal changes in the main hydrographic
and meteorological features in the eastern Alboran Sea. El Niño Event caused a sea surface temperature
(SST) increase during fall that forced the proliferation of Globigerinoides ruber and the reduction of the
diatoms. Benthic tests were also collected in the sediment trap; highest fluxes of the group were probably
related to high bottom water activity. Wind-driven particles were collected along the year, but their fluxes
follow the local wind regim
Rapid changes in the seasonal sea level cycle along the US Gulf coast from the late 20th century
Temporal variations of the seasonal sea level harmonics throughout the 20th and early 21st century along the United States Gulf coast are investigated. A significant amplification of the annual sea level cycle from the 1990s onward is found, with both lower winter and higher summer sea levels in the eastern Gulf. Ancillary data are used to build a set of multiple regression models to explore the mechanisms driving the decadal variability and recent increase in the annual cycle. The results suggest that changes in the air surface temperature toward warmer summers and colder winters and changes in mean sea level pressure explain most of the amplitude increase. The changes in the seasonal sea level cycle are shown to have almost doubled the risk of hurricane induced flooding associated with sea level rise since the 1990s for the eastern and north-eastern Gulf of Mexico coastlines
A new daily quarter degree sea level anomaly product from CryoSat-2 for ocean science and applications
The European Space Agency launched CryoSat-2 as the first European ice mission in 2010. Its advanced altimeter met primary objectives concerned with sea ice thickness and ice sheets. The value of Cryosat-2 data over global oceans was recognised, and operational products were developed via the CryoSat Ocean Processor (COP). The novel orbit of CryoSat-2 results in a denser coverage of sample points compared to other satellite altimeters. The National Oceanography Centre Sea Level Anomaly (NOCSLA) gridded product is based on interpolating Geophysical Ocean Products (GOP) using weights in space and time. GOP represents the highest quality operational ocean data. NOCSLA is a daily, ¼° sea level anomaly product covering non-coastal oceans between [60°N 60°S] and January 2011 to October 2020. The paper presents the methodology and scientific applications of NOCSLA. Oceanographic features observed are compared against products from other missions, including Rossby waves and El Niño signals. Results show good agreement with other products, confirming the value of Cryosat-2 data for ocean science and applications
Acceleration of U.S. Southeast and Gulf coast sea-level rise amplified by internal climate variability
While there is evidence for an acceleration in global mean sea level (MSL) since the 1960s, its detection at local levels has been hampered by the considerable influence of natural variability on the rate of MSL change. Here we report a MSL acceleration in tide gauge records along the U.S. Southeast and Gulf coasts that has led to rates (>10 mm yr−1 since 2010) that are unprecedented in at least 120 years. We show that this acceleration is primarily induced by an ocean dynamic signal exceeding the externally forced response from historical climate model simulations. However, when the simulated forced response is removed from observations, the residuals are neither historically unprecedented nor inconsistent with internal variability in simulations. A large fraction of the residuals is consistent with wind driven Rossby waves in the tropical North Atlantic. This indicates that this ongoing acceleration represents the compounding effects of external forcing and internal climate variability