334 research outputs found

    Perfluorooctane Sulfonate (PFOS) and Related Perfluorinated Compounds in Human Maternal and Cord Blood Samples: Assessment of PFOS Exposure in a Susceptible Population during Pregnancy

    Get PDF
    Fluorinated organic compounds (FOCs), such as perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), and perfluorooctane sulfonylamide (PFOSA), are widely used in the manufacture of plastic, electronics, textile, and construction material in the apparel, leather, and upholstery industries. FOCs have been detected in human blood samples. Studies have indicated that FOCs may be detrimental to rodent development possibly by affecting thyroid hormone levels. In the present study, we determined the concentrations of FOCs in maternal and cord blood samples. Pregnant women 17–37 years of age were enrolled as subjects. FOCs in 15 pairs of maternal and cord blood samples were analyzed by liquid chromatography–electrospray mass spectrometry coupled with online extraction. The limits of quantification of PFOS, PFOA, and PFOSA in human plasma or serum were 0.5, 0.5, and 1.0 ng/mL, respectively. The method enables the precise determination of FOCs and can be applied to the detection of FOCs in human blood samples for monitoring human exposure. PFOS concentrations in maternal samples ranged from 4.9 to 17.6 ng/mL, whereas those in fetal samples ranged from 1.6 to 5.3 ng/mL. In contrast, PFOSA was not detected in fetal or maternal samples, whereas PFOA was detected only in maternal samples (range, < 0.5 to 2.3 ng/mL, 4 of 15). Our results revealed a high correlation between PFOS concentrations in maternal and cord blood (r(2) = 0.876). However, we did not find any significant correlations between PFOS concentration in maternal and cord blood samples and age bracket, birth weight, or levels of thyroid-stimulating hormone or free thyroxine. Our study revealed that human fetuses in Japan may be exposed to relatively high levels of FOCs. Further investigation is required to determine the postnatal effects of fetal exposure to FOCs

    Bisphenol A exposure in Mexico City and risk of prematurity: a pilot nested case control study

    Get PDF
    Abstract Background Presence of Bisphenol A (BPA) has been documented worldwide in a variety of human biological samples. There is growing evidence that low level BPA exposure may impact placental tissue development and thyroid function in humans. The aim of this present pilot study was to determine urinary concentrations of BPA during the last trimester of pregnancy among a small subset of women in Mexico City, Mexico and relate these concentrations to risk of delivering prematurely. Methods A nested case-control subset of 60 participants in the Early Life Exposure in Mexico to ENvironmental Toxicants (ELEMENT) study in Mexico City, Mexico were selected based on delivering less than or equal to 37 weeks of gestation and greater than 37 weeks of gestation. Third trimester archived spot urine samples were analyzed by online solid phase extraction coupled with high performance liquid chromatography isotope dilution tandem mass spectrometry. Results BPA was detected in 80.0% (N = 48) of the urine samples; total concentrations ranged from &lt; 0.4 &#956;g/L to 6.7 &#956;g/L; uncorrected geometric mean was 1.52 &#956;g/L. The adjusted odds ratio of delivering less than or equal to 37 weeks in relation to specific gravity adjusted third trimester BPA concentration was 1.91 (95%CI 0.93, 3.91, p-value = 0.08). When cases were further restricted to births occurring prior to the 37th week (n = 12), the odds ratio for specific-gravity adjusted BPA was larger and statistically significant (p &lt; 0.05). Conclusions This is the first study to document measurable levels of BPA in the urine of a population of Mexican women. This study also provides preliminary evidence, based on a single spot urine sample collected during the third trimester, that pregnant women who delivered less than or equal to 37 weeks of gestation and prematurely (&lt; 37 weeks) had higher urinary concentrations of BPA compared to women delivering after 37 weeks.http://deepblue.lib.umich.edu/bitstream/2027.42/78251/1/1476-069X-9-62.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78251/2/1476-069X-9-62.pdfPeer Reviewe

    Bisphenol A and 17β-Estradiol Promote Arrhythmia in the Female Heart via Alteration of Calcium Handling

    Get PDF
    There is wide-spread human exposure to bisphenol A (BPA), a ubiquitous estrogenic endocrine disruptor that has been implicated as having potentially harmful effects on human heart health. Higher urine BPA concentrations have been shown to be associated with cardiovascular diseases in humans. However, neither the nature nor the mechanism(s) of BPA action on the heart are understood. leak suppressed estrogen-induced triggered activities. The rapid response of female myocytes to estrogens was abolished in an estrogen receptor (ER) β knockout mouse model. leak. Our study provides the first experimental evidence suggesting that exposure to estrogenic endocrine disrupting chemicals and the unique sensitivity of female hearts to estrogens may play a role in arrhythmogenesis in the female heart

    Urinary bisphenol A concentrations in girls from rural and urban Egypt: a pilot study

    Get PDF
    Abstract Background Exposure to endocrine active compounds, including bisphenol A (BPA), remains poorly characterized in developing countries despite the fact that behavioral practices related to westernization have the potential to influence exposure. BPA is a high production volume chemical that has been associated with metabolic dysfunction as well as behavioral and developmental effects in people, including children. In this pilot study, we evaluate BPA exposure and assess likely pathways of exposure among girls from urban and rural Egypt. Methods We measured urinary concentrations of total (free plus conjugated) species of BPA in spot samples in urban (N = 30) and rural (N = 30) Egyptian girls, and compared these concentrations to preexisting data from age-matched American girls (N = 47) from the U.S. National Health and Nutrition Examination Survey (NHANES). We also collected anthropometric and questionnaire data regarding food storage behaviors to assess potential routes of exposure. Results Urban and rural Egyptian girls exhibited similar concentrations of urinary total BPA, with median unadjusted values of 1.00 and 0.60 ng/mL, respectively. Concentrations of urinary BPA in this group of Egyptian girls (median unadjusted: 0.70 ng/mL) were significantly lower compared to age-matched American girls (median unadjusted: 2.60 ng/mL) according to NHANES 2009-2010 data. Reported storage of food in plastic containers was a significant predictor of increasing concentrations of urinary BPA. Conclusions Despite the relatively low urinary BPA concentrations within this Egyptian cohort, the significant association between food storage behaviors and increasing urinary BPA concentration highlights the need to understand food and consumer product patterns that may be closing the gap between urban and rural lifestyles.http://deepblue.lib.umich.edu/bitstream/2027.42/112495/1/12940_2011_Article_523.pd

    Critical evaluation of key evidence on the human health hazards of exposure to bisphenol A

    Get PDF
    Despite the fact that more than 5000 safety-related studies have been published on bisphenol A (BPA), there seems to be no resolution of the apparently deadlocked controversy as to whether exposure of the general population to BPA causes adverse effects due to its estrogenicity. Therefore, the Advisory Committee of the German Society of Toxicology reviewed the background and cutting-edge topics of this BPA controversy. The current tolerable daily intake value (TDI) of 0.05 mg/kg body weight [bw]/day, derived by the European Food Safety Authority (EFSA), is mainly based on body weight changes in two- and three-generation studies in mice and rats. Recently, these studies and the derivation of the TDI have been criticized. After having carefully considered all arguments, the Committee had to conclude that the criticism was scientifically not justified; moreover, recently published additional data further support the reliability of the two-and three-generation studies demonstrating a lack of estrogen-dependent effects at and below doses on which the current TDI is based. A frequently discussed topic is whether doses below 5 mg/ kg bw/day may cause adverse health effects in laboratory animals. Meanwhile, it has become clear that positive results from some explorative studies have not been confirmed in subsequent studies with higher numbers of animals or a priori defined hypotheses. Particularly relevant are some recent studies with negative outcomes that addressed effects of BPA on the brain, behavior, and the prostate in rodents for extrapolation to the human situation. The Committee came to the conclusion that rodent data can well be used as a basis for human risk evaluation. Currently published conjectures that rats are insensitive to estrogens compared to humans can be refuted. Data from toxicokinetics studies show that the half-life of BPA in adult human subjects is less than 2 hours and BPA is completely recovered in urine as BPA-conjugates. Tissue deconjugation of BPA-glucuronide and -sulfate may occur. Because of the extremely low quantities, it is only of minor relevance for BPA toxicity. Biomonitoring studies have been used to estimate human BPA exposure and show that the daily intake of BPA is far below the TDI for the general population. Further topics addressed in this article include reasons why some studies on BPA are not reproducible; the relevance of oral versus non-oral exposure routes; the degree to which newborns are at higher systemic BPA exposure; increased BPA exposure by infusions in intensive care units; mechanisms of action other than estrogen receptor activation; and the current regulatory status in Europe, as well as in the USA, Canada, Japan, New Zealand, and Australia. Overall, the Committee concluded that the current TDI for BPA is adequately justified and that the available evidence indicates that BPA exposure represents no noteworthy risk to the health of the human population, including newborns and babies

    Comparing United States and Canadian population exposures from National Biomonitoring Surveys: Bisphenol A intake as a case study

    Get PDF
    The Centers for Disease Control and Prevention provides biomonitoring data in the United States as part of the National Health and Nutrition Examination Survey (NHANES). Recently, Statistics Canada initiated a similar survey — the Canadian Health Measures Survey (CHMS). Comparison of US and Canadian biomonitoring data can generate hypotheses regarding human exposures from environmental media and consumer products. To ensure that such comparisons are scientifically meaningful, it is essential to first evaluate aspects of the surveys' methods that can impact comparability of data. We examined CHMS and NHANES methodologies, using bisphenol A (BPA) as a case study, to evaluate whether survey differences exist that would hinder our ability to compare chemical concentrations between countries. We explored methods associated with participant selection, urine sampling, and analytical methods. BPA intakes were also estimated to address body weight differences between countries. Differences in survey methods were identified but are unlikely to have substantial impacts on inter-survey comparisons of BPA intakes. BPA intakes for both countries are below health-based guidance values set by the US, Canada and the European Food Safety Authority. We recommend that before comparing biomonitoring data between surveys, a thorough review of methodologic aspects that might impact biomonitoring results be conducted

    In vivo and ex vivo percutaneous absorption of [14C]-bisphenol A in rats: a possible extrapolation to human absorption?

    Get PDF
    Bisphenol A (BPA) is a monomer used mainly in the synthesis of polycarbonates and epoxy resins. Percutaneous absorption is the second source of exposure, after inhalation, in the work environment. However, studies on this route of absorption are lacking or incomplete. In this study, percutaneous BPA absorption was measured in vivo and ex vivo in the rat, and ex vivo in humans. An approximately 12-fold difference in permeability between rat skin and human skin was found, with permeability being higher in the rat. In addition, inter- and intra-individual variability of up to tenfold was observed in humans. No accumulation of BPA in the skin was found during exposure. The skin clearance rate following exposure was estimated at 0.4 μg/cm²/h. Ex vivo and in vivo percutaneous absorption fluxes of BPA in the rat were in the same range (about 2.0 μg/cm²/h), suggesting that extrapolation to the in vivo situation in humans may be possible. The European tolerable daily intake (TDI) of BPA is 50 μg/kg body weight. However, many research projects have highlighted the significant effects of BPA in rodents at doses lower than 10 μg/kg/day. A 1-h occupational exposure over 2,000 cm² (forearms and hands) may lead to a BPA absorption of 4 μg/kg/day. This is 8% of the European TDI and is very close to the value at which effects have been observed in animals. This absorption must therefore be taken into account when evaluating risks of BPA exposure, at least until more relevant results on the toxicity of BPA in humans are available

    Social disparities in exposures to bisphenol A and polyfluoroalkyl chemicals: a cross-sectional study within NHANES 2003-2006

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bisphenol A (BPA) and polyfluoroalkyl chemicals (PFCs) are suspected endocrine disrupting compounds known to be ubiquitous in people's bodies. Population disparities in exposure to these chemicals have not been fully characterized.</p> <p>Methods</p> <p>We analyzed data from the 2003-2006 National Health and Nutrition Examination Survey. Using multivariable linear regression we examined the association between urinary concentrations of BPA, serum concentrations of four PFCs, and multiple measures of socioeconomic position (SEP): family income, education, occupation, and food security. We also examined associations with race/ethnicity.</p> <p>Results</p> <p>All four PFCs were positively associated with family income, whereas BPA was inversely associated with family income. BPA concentrations were higher in people who reported very low food security and received emergency food assistance than in those who did not. This association was particularly strong in children: 6-11 year-olds whose families received emergency food had BPA levels 54% higher (95% CI, 13 to 112%) than children of families who did not. For BPA and PFCs we saw smaller and less consistent associations with education and occupation. Mexican Americans had the lowest concentrations of any racial/ethnic group of both types of chemicals; for PFCs, Mexican Americans not born in the U.S. had much lower levels than those born in the U.S.</p> <p>Conclusions</p> <p>People with lower incomes had higher body burdens of BPA; the reverse was true for PFCs. Family income with adjustment for family size was the strongest predictor of chemical concentrations among the different measures of SEP we studied. Income, education, occupation, and food security appear to capture different aspects of SEP that may be related to exposure to BPA and PFCs and are not necessarily interchangeable as measures of SEP in environmental epidemiology studies. Differences by race/ethnicity were independent of SEP.</p
    corecore