21 research outputs found

    Ecdysone receptor directly binds the promoter of the Drosophila caspase dronc, regulating its expression in specific tissues

    Get PDF
    The steroid hormone ecdysone regulates moulting, cell death, and differentiation during insect development. Ecdysone mediates its biological effects by either direct activation of gene transcription after binding to its receptor EcR–Usp or via hierarchical transcriptional regulation of several primary transcription factors. In turn, these transcription factors regulate the expression of several downstream genes responsible for specific biological outcomes. DRONC, the Drosophila initiator caspase, is transcriptionally regulated by ecdysone during development. We demonstrate here that the dronc promoter directly binds EcR–Usp. We further show that mutation of the EcR–Usp binding element (EcRBE) reduces transcription of a reporter and abolishes transactivation by an EcR isoform. We demonstrate that EcRBE is required for temporal regulation of dronc expression in response to ecdysone in specific tissues. We also uncover the participation of a putative repressor whose function appears to be coupled with EcR–Usp. These results indicate that direct binding of EcR–Usp is crucial for controlling the timing of dronc expression in specific tissues

    The role of cytochrome c in caspase activation in Drosophila melanogaster cells

    Get PDF
    The release of cytochrome c from mitochondria is necessary for the formation of the Apaf-1 apoptosome and subsequent activation of caspase-9 in mammalian cells. However, the role of cytochrome c in caspase activation in Drosophila cells is not well understood. We demonstrate here that cytochrome c remains associated with mitochondria during apoptosis of Drosophila cells and that the initiator caspase DRONC and effector caspase DRICE are activated after various death stimuli without any significant release of cytochrome c in the cytosol. Ectopic expression of the proapoptotic Bcl-2 protein, DEBCL, also fails to show any cytochrome c release from mitochondria. A significant proportion of cellular DRONC and DRICE appears to localize near mitochondria, suggesting that an apoptosome may form in the vicinity of mitochondria in the absence of cytochrome c release. In vitro, DRONC was recruited to a >700-kD complex, similar to the mammalian apoptosome in cell extracts supplemented with cytochrome c and dATP. These results suggest that caspase activation in insects follows a more primitive mechanism that may be the precursor to the caspase activation pathways in mammals

    Ecdysone-induced expression of the caspase DRONC during hormone-dependent programmed cell death in Drosophila is regulated by Broad-Complex

    Get PDF
    The steroid hormone ecdysone regulates both cell differentiation and cell death during insect metamorphosis, by hierarchical transcriptional regulation of a number of genes, including the Broad-Complex (BR-C), the zinc finger family of transcription factors. These genes in turn regulate the transcription of a number of downstream genes. DRONC, a key apical caspase in Drosophila, is the only known caspase that is transcriptionally regulated by ecdysone during development. We demonstrate that dronc gene expression is ablated or reduced in BR-C mutant flies. Using RNA interference in an ecdysone-responsive Drosophila cell line, we show that DRONC is essential for ecdysone-mediated cell death, and that dronc upregulation in these cells is controlled by BR-C. Finally, we show that the dronc promoter has BR-C interaction sites, and that it can be transactivated by a specific isoform of BR-C. These results indicate that BR-C plays a key role in ecdysone-mediated caspase regulation

    dLKR/SDH regulates hormone-mediated histone arginine methylation and transcription of cell death genes

    Get PDF
    The sequential modifications of histones form the basis of the histone code that translates into either gene activation or repression. Nuclear receptors recruit a cohort of histone-modifying enzymes in response to ligand binding and regulate proliferation, differentiation, and cell death. In Drosophila melanogaster, the steroid hormone ecdysone binds its heterodimeric receptor ecdysone receptor/ultraspiracle to spatiotemporally regulate the transcription of several genes. In this study, we identify a novel cofactor, Drosophila lysine ketoglutarate reductase (dLKR)/saccharopine dehydrogenase (SDH), that is involved in ecdysone-mediated transcription. dLKR/SDH binds histones H3 and H4 and suppresses ecdysone-mediated transcription of cell death genes by inhibiting histone H3R17me2 mediated by the Drosophila arginine methyl transferase CARMER. Our data suggest that the dynamic recruitment of dLKR/SDH to ecdysone-regulated gene promoters controls the timing of hormone-induced gene expression. In the absence of dLKR/SDH, histone methylation occurs prematurely, resulting in enhanced gene activation. Consistent with these observations, the loss of dLKR/SDH in Drosophila enhances hormone-regulated gene expression, affecting the developmental timing of gene activation

    Impact of Environmental and Epigenetic Changes on Mesenchymal Stem Cells during Aging

    Get PDF
    Many crucial epigenetic changes occur during early skeletal development and throughout life due to aging, disease and are heavily influenced by an individual’s lifestyle. Epigenetics is the study of heritable changes in gene expression as the result of changes in the environment without any mutation in the underlying DNA sequence. The epigenetic profiles of cells are dynamic and mediated by different mechanisms, including histone modifications, non-coding RNA-associated gene silencing and DNA methylation. Given the underlining role of dysfunctional mesenchymal tissues in common age-related skeletal diseases such as osteoporosis and osteoarthritis, investigations into skeletal stem cells or mesenchymal stem cells (MSC) and their functional deregulation during aging has been of great interest and how this is mediated by an evolving epigenetic landscape. The present review describes the recent findings in epigenetic changes of MSCs that effect growth and cell fate determination in the context of aging, diet, exercise and bone-related diseases

    Nuclear factor of activated T cells contributes to the function of the CD28 response region of the granulocyte macrophage-colony stimulating factor promoter

    No full text
    The granulocyte macrophage colony stimulating factor (GM-CSF) promoter contains a 10 bp element known as CK-1 or CD28RE that specifically responds to the co-stimulatory signal delivered to T cells via the CD28 surface receptor. This element is a variant NFκB site that does not function alone but requires an adjacent promoter region that includes a classical NFκB element, an Sp-1 site and a putative activator protein-1 (AP-1)-like binding site. The entire region is referred to as the CD28 response region (CD28RR). The GM-CSF CK-1 element has been shown to bind NFκB proteins, in particular c-Rel, whose binding and function is dependent on the architectural transcription factor HMGI(Y). It has been previously suggested that the nuclear factor of activated T cells (NFAT) family of proteins also plays a role in the activity of this region. We show here that recombinant NFATp but not AP-1 can bind to the GM-CSF CD28RR. NFATp present in activated Jurkat T cell extracts can also interact with the CD28RR. The binding of NFATp and Rel proteins requires the same core CK-1 sequences, and appears to be mutually exclusive. We investigated the functional significance of NFATp binding to CK-1 by overexpressing the protein in Jurkat T cells and found that NFATp cannot activate the CD28RR alone but can cooperate with signals generated by phorbol 12-myristate 13-acetate/calcium ionophore. The CD28RR is therefore a complex region that can bind and respond to a combination of transcription factors and signals

    A NF-kB/Sp1 Region Is Essential for Chromatin Remodeling and Correct Transcription of a Human Granulocyte-Macrophage Colony-Stimulating Factor Transgene

    No full text
    The GM-CSF gene is expressed following activation of T cells. The proximal promoter and an upstream enhancer have previously been characterized using transfection and reporter assays in T cell lines in culture. A 10.5-kb transgene containing the entire human GM-CSF gene has also been shown to display inducible, position-independent, copy number-dependent transcription in mouse splenocytes. To determine the role of individual promoter elements in transgene function, mutations were introduced into the proximal promoter and activity assessed following the generation of transgenic mice. Of four mutations introduced into the transgene promoter, only one, in an NF-κB/Sp1 region, led to decreased induction of the transgene in splenocytes or bone marrow-derived macrophages. This mutation also affected the activity of reporter gene constructs stably transfected into T cell lines in culture, but not when transiently transfected into the same cell lines. The mutation alters the NF-κB family members that bind to the NF-κB site as well as reducing the binding of Sp1 to an adjacent element. A DNase I hypersensitive site that is normally generated at the promoter following T cell activation on the wild-type transgene does not appear in the mutant transgene. These results suggest that the NF-κB/Sp1 region plays a critical role in chromatin remodeling and transcription on the GM-CSF promoter in primary T cells
    corecore