3 research outputs found

    Hypoxia Reduces the Pathogenicity of Pseudomonas Aeruginosa by Decreasing the Expression of Multiple Virulence Factors

    Get PDF
    Our understanding of how the course of opportunistic bacterial infection is influenced by the microenvironment is limited. We demonstrate that the pathogenicity of Pseudomonas aeruginosa strains derived from acute clinical infections is higher than that of strains derived from chronic infections, where tissues are hypoxic. Exposure to hypoxia attenuated the pathogenicity of strains from acute (but not chronic) infections, implicating a role for hypoxia in regulating bacterial virulence. Mass spectrometric analysis of the secretome of P. aeruginosa derived from an acute infection revealed hypoxia-induced repression of multiple virulence factors independent of altered bacterial growth. Pseudomonas aeruginosa lacking the Pseudomonas prolyl-hydroxylase domain-containing protein, which has been implicated in bacterial oxygen sensing, displays reduced virulence factor expression. Furthermore, pharmacological hydroxylase inhibition reduces virulence factor expression and pathogenicity in a murine model of pneumonia. We hypothesize that hypoxia reduces P. aeruginosa virulence at least in part through the regulation of bacterial hydroxylases

    Increased Virulence of Bloodstream Over Peripheral Isolates of P. aeruginosa Identified Through Post-transcriptional Regulation of Virulence Factors

    Get PDF
    The factors influencing the virulence of P. aeruginosa in the development of invasive infection remain poorly understood. Here, we investigated the role of the host microenvironment in shaping pathogen virulence and investigated the mechanisms involved. Comparing seven paired genetically indistinguishable clinical bloodstream and peripheral isolates of P. aeruginosa, we demonstrate that isolates derived from bloodstream infections are more virulent than their peripheral counterparts (p = 0.025). Bloodstream and peripheral isolates elicited similar NF-kB responses in a THP-1 monocyte NF-kappaB reporter cell line implicating similar immunogenicity. Proteomic analysis by mass spectrometry identified multiple virulence and virulence-related factors including LecA and RpoN in significantly greater abundance in the bacterial supernatant from the bloodstream isolate in comparison to that from the corresponding peripheral isolate. Investigation by qPCR revealed that control of expression of these virulence factors was not due to altered levels of transcription. Based on these data, we hypothesize a post-transcriptional mechanism of virulence regulation in P. aeruginosa bloodstream infections influenced by surrounding microenvironmental conditions.Science Foundation Irelan
    corecore