16 research outputs found

    Genome-wide analysis of the effect of histone modifications on the coexpression of neighboring genes in Saccharomyces cerevisiae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neighboring gene pairs in the genome of <it>Saccharomyces cerevisiae </it>have a tendency to be expressed at the same time. The distribution of histone modifications along chromatin fibers is suggested to be an important mechanism responsible for such coexpression. However, the extent of the contribution of histone modifications to the coexpression of neighboring genes is unclear.</p> <p>Results</p> <p>We investigated the similarity of histone modification between neighboring genes using autocorrelation analysis and composite profiles. Our analysis showed that neighboring genes had similar levels or changes of histone modifications, especially those transcribed in the same direction. The similarities, however, were restricted to 1 or 2 neighboring genes. Moreover, the expression of a gene was significantly correlated with histone modification of its neighboring gene(s), but this was limited to only 1 or 2 neighbors. Using a hidden Markov model (HMM), we found more than 2000 chromatin domains with similar acetylation changes as the cultures changed and a considerable number of these domains covered 2-4 genes. Gene pairs within domains exhibited a higher level of coexpression than random pairs and shared similar functions.</p> <p>Conclusions</p> <p>The results of this study suggest that similar histone modifications occur within only a small local chromatin region in yeast. The modifications generally have an effect on coexpression with only 1 or 2 neighboring genes. Some blocking mechanism(s) might strictly restrain the distribution of histone modifications in yeast.</p

    Two distinct modes of nucleosome modulation associated with different degrees of dependence of nucleosome positioning on the underlying DNA sequence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The nucleosome is the fundamental unit of eukaryotic genomes. Its positioning plays a central role in diverse cellular processes that rely on access to genomic DNA. Experimental evidence suggests that the genomic DNA sequence is one important determinant of nucleosome positioning. Yet it is less clear whether the role of the underlying DNA sequence in nucleosome positioning varies across different promoters. Whether different determinants of nucleosome positioning have characteristic influences on nucleosome modulation also remains to be elucidated.</p> <p>Results</p> <p>We identified two typical promoter classes in yeast associated with high or low dependence of nucleosome positioning on the underlying DNA sequence, respectively. Importantly, the two classes have low or high intrinsic sequence preferences for nucleosomes, respectively. The two classes are further distinguished by multiple promoter features, including nucleosome occupancy, nucleosome fuzziness, H2A.Z occupancy, changes in nucleosome positions before and after transcriptional perturbation, and gene activity. Both classes have significantly high turnover rates of histone H3, but employ distinct modes of nucleosome modulation: The first class is characterized by hyperacetylation, whereas the second class is highly regulated by ATP-dependent chromatin remodelling.</p> <p>Conclusion</p> <p>Our results, coupled with the known features of nucleosome modulation, suggest that the two distinct modes of nucleosome modulation selectively employed by different genes are linked with the intrinsic sequence preferences for nucleosomes. The difference in modes of nucleosome modulation can account for the difference in the contribution of DNA sequence to nucleosome positioning between both promoter classes.</p

    Genome-wide analysis of interactions between ATP-dependent chromatin remodeling and histone modifications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>ATP-dependent chromatin remodeling and the covalent modification of histones play central roles in determining chromatin structure and function. Although several specific interactions between these two activities have been elaborated, the global landscape remains to be elucidated.</p> <p>Results</p> <p>In this paper, we have developed a computational method to generate the first genome-wide landscape of interactions between ATP-dependent chromatin remodeling and the covalent modification of histones in <it>Saccharomyces cerevisiae</it>. Our method succeeds in identifying known interactions and uncovers many previously unknown interactions between these two activities. Analysis of the genome-wide picture revealed that transcription-related modifications tend to interact with more chromatin remodelers. Our results also demonstrate that most chromatin remodeling-modification interactions act via interactions of remodelers with both histone-modifying enzymes and histone residues. We also found that the co-occurrence of both modification and remodeling has significantly different influences on multiple gene features (e.g. nucleosome occupancy) compared with the presence of either one.</p> <p>Conclusion</p> <p>We gave the first genome-wide picture of ATP-dependent chromatin remodeling-histone modification interactions. We also revealed how these two activities work together to regulate chromatin structure and function. Our results suggest that distinct strategies for regulating chromatin activity are selectively employed by genes with different properties.</p

    Transcriptional interaction-assisted identification of dynamic nucleosome positioning

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nucleosomes regulate DNA accessibility and therefore play a central role in transcription control. Computational methods have been developed to predict static nucleosome positions from DNA sequences, but nucleosomes are dynamic in vivo.</p> <p>Results</p> <p>Motivated by our observation that transcriptional interaction is discriminative information for nucleosome occupancy, we developed a novel computational approach to identify dynamic nucleosome positions at promoters by combining transcriptional interaction and genomic sequence information. Our approach successfully identified experimentally determined nucleosome positioning dynamics available in three cellular conditions, and significantly improved the prediction accuracy which is based on sequence information alone. We then applied our approach to various cellular conditions and established a comprehensive landscape of dynamic nucleosome positioning in yeast.</p> <p>Conclusion</p> <p>Analysis of this landscape revealed that the majority of nucleosome positions are maintained during most conditions. However, nucleosome occupancy at most promoters fluctuates with the corresponding gene expression level and is reduced specifically at the phase of peak expression. Further investigation into properties of nucleosome occupancy identified two gene groups associated with distinct modes of nucleosome modulation. Our results suggest that both the intrinsic sequence and regulatory proteins modulate nucleosomes in an altered manner.</p

    Missing value imputation for microarray gene expression data using histone acetylation information

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is an important pre-processing step to accurately estimate missing values in microarray data, because complete datasets are required in numerous expression profile analysis in bioinformatics. Although several methods have been suggested, their performances are not satisfactory for datasets with high missing percentages.</p> <p>Results</p> <p>The paper explores the feasibility of doing missing value imputation with the help of gene regulatory mechanism. An imputation framework called histone acetylation information aided imputation method (HAIimpute method) is presented. It incorporates the histone acetylation information into the conventional KNN(<it>k</it>-nearest neighbor) and LLS(local least square) imputation algorithms for final prediction of the missing values. The experimental results indicated that the use of acetylation information can provide significant improvements in microarray imputation accuracy. The HAIimpute methods consistently improve the widely used methods such as KNN and LLS in terms of normalized root mean squared error (NRMSE). Meanwhile, the genes imputed by HAIimpute methods are more correlated with the original complete genes in terms of Pearson correlation coefficients. Furthermore, the proposed methods also outperform GOimpute, which is one of the existing related methods that use the functional similarity as the external information.</p> <p>Conclusion</p> <p>We demonstrated that the using of histone acetylation information could greatly improve the performance of the imputation especially at high missing percentages. This idea can be generalized to various imputation methods to facilitate the performance. Moreover, with more knowledge accumulated on gene regulatory mechanism in addition to histone acetylation, the performance of our approach can be further improved and verified.</p

    A Robust Battery Grouping Method Based on a Characteristic Distribution Model

    No full text
    The inconsistent characteristics of individual power batteries in a battery pack can seriously affect the performance and service life of the whole pack. Battery grouping is an effective approach for dealing with the inconsistency problem by grouping batteries with similar characteristics in the same battery pack. In actual production, the battery grouping process still relies on the traditional manual method, which results in high labor and time costs. In this paper, a robust and effective battery grouping method based on the characteristic distribution model is developed. Specifically, a novel characteristic distribution model is proposed to determine the grouping priority of different batteries. Then, an improved k-nearest-neighbor algorithm is used to decide which batteries should be group into the same battery pack. Experimental results demonstrate the effectiveness of the proposed method

    Adaptive State of Charge Estimation for Li-Ion Batteries Based on an Unscented Kalman Filter with an Enhanced Battery Model

    No full text
    Accurate estimation of the state of charge (SOC) of batteries is one of the key problems in a battery management system. This paper proposes an adaptive SOC estimation method based on unscented Kalman filter algorithms for lithium (Li)-ion batteries. First, an enhanced battery model is proposed to include the impacts due to different discharge rates and temperatures. An adaptive joint estimation of the battery SOC and battery internal resistance is then presented to enhance system robustness with battery aging. The SOC estimation algorithm has been developed and verified through experiments on different types of Li-ion batteries. The results indicate that the proposed method provides an accurate SOC estimation and is computationally efficient, making it suitable for embedded system implementation
    corecore