44 research outputs found

    The Magnitude of Global Marine Species Diversity

    Get PDF
    Background: The question of how many marine species exist is important because it provides a metric for how much we do and do not know about life in the oceans. We have compiled the first register of the marine species of the world and used this baseline to estimate how many more species, partitioned among all major eukaryotic groups, may be discovered. Results: There are ∼226,000 eukaryotic marine species described. More species were described in the past decade (∼20,000) than in any previous one. The number of authors describing new species has been increasing at a faster rate than the number of new species described in the past six decades. We report that there are ∼170,000 synonyms, that 58,000–72,000 species are collected but not yet described, and that 482,000–741,000 more species have yet to be sampled. Molecular methods may add tens of thousands of cryptic species. Thus, there may be 0.7–1.0 million marine species. Past rates of description of new species indicate there may be 0.5 ± 0.2 million marine species. On average 37% (median 31%) of species in over 100 recent field studies around the world might be new to science. Conclusions: Currently, between one-third and two-thirds of marine species may be undescribed, and previous estimates of there being well over one million marine species appear highly unlikely. More species than ever before are being described annually by an increasing number of authors. If the current trend continues, most species will be discovered this century

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    SARS-CoV-2-specific nasal IgA wanes 9 months after hospitalisation with COVID-19 and is not induced by subsequent vaccination

    Get PDF
    BACKGROUND: Most studies of immunity to SARS-CoV-2 focus on circulating antibody, giving limited insights into mucosal defences that prevent viral replication and onward transmission. We studied nasal and plasma antibody responses one year after hospitalisation for COVID-19, including a period when SARS-CoV-2 vaccination was introduced. METHODS: In this follow up study, plasma and nasosorption samples were prospectively collected from 446 adults hospitalised for COVID-19 between February 2020 and March 2021 via the ISARIC4C and PHOSP-COVID consortia. IgA and IgG responses to NP and S of ancestral SARS-CoV-2, Delta and Omicron (BA.1) variants were measured by electrochemiluminescence and compared with plasma neutralisation data. FINDINGS: Strong and consistent nasal anti-NP and anti-S IgA responses were demonstrated, which remained elevated for nine months (p < 0.0001). Nasal and plasma anti-S IgG remained elevated for at least 12 months (p < 0.0001) with plasma neutralising titres that were raised against all variants compared to controls (p < 0.0001). Of 323 with complete data, 307 were vaccinated between 6 and 12 months; coinciding with rises in nasal and plasma IgA and IgG anti-S titres for all SARS-CoV-2 variants, although the change in nasal IgA was minimal (1.46-fold change after 10 months, p = 0.011) and the median remained below the positive threshold determined by pre-pandemic controls. Samples 12 months after admission showed no association between nasal IgA and plasma IgG anti-S responses (R = 0.05, p = 0.18), indicating that nasal IgA responses are distinct from those in plasma and minimally boosted by vaccination. INTERPRETATION: The decline in nasal IgA responses 9 months after infection and minimal impact of subsequent vaccination may explain the lack of long-lasting nasal defence against reinfection and the limited effects of vaccination on transmission. These findings highlight the need to develop vaccines that enhance nasal immunity. FUNDING: This study has been supported by ISARIC4C and PHOSP-COVID consortia. ISARIC4C is supported by grants from the National Institute for Health and Care Research and the Medical Research Council. Liverpool Experimental Cancer Medicine Centre provided infrastructure support for this research. The PHOSP-COVD study is jointly funded by UK Research and Innovation and National Institute of Health and Care Research. The funders were not involved in the study design, interpretation of data or the writing of this manuscript

    Large-scale phenotyping of patients with long COVID post-hospitalization reveals mechanistic subtypes of disease

    Get PDF
    One in ten severe acute respiratory syndrome coronavirus 2 infections result in prolonged symptoms termed long coronavirus disease (COVID), yet disease phenotypes and mechanisms are poorly understood1. Here we profiled 368 plasma proteins in 657 participants ≥3 months following hospitalization. Of these, 426 had at least one long COVID symptom and 233 had fully recovered. Elevated markers of myeloid inflammation and complement activation were associated with long COVID. IL-1R2, MATN2 and COLEC12 were associated with cardiorespiratory symptoms, fatigue and anxiety/depression; MATN2, CSF3 and C1QA were elevated in gastrointestinal symptoms and C1QA was elevated in cognitive impairment. Additional markers of alterations in nerve tissue repair (SPON-1 and NFASC) were elevated in those with cognitive impairment and SCG3, suggestive of brain–gut axis disturbance, was elevated in gastrointestinal symptoms. Severe acute respiratory syndrome coronavirus 2-specific immunoglobulin G (IgG) was persistently elevated in some individuals with long COVID, but virus was not detected in sputum. Analysis of inflammatory markers in nasal fluids showed no association with symptoms. Our study aimed to understand inflammatory processes that underlie long COVID and was not designed for biomarker discovery. Our findings suggest that specific inflammatory pathways related to tissue damage are implicated in subtypes of long COVID, which might be targeted in future therapeutic trials

    Activation of peripheral excitatory amino acid receptors decreases the duration of local anesthesia.

    No full text
    Item does not contain fulltex

    Glutamate-induced sensitization of rat masseter muscle fibers.

    No full text
    Item does not contain fulltextIn rats, intradermal or intraarticular injection of glutamate or selective excitatory amino acid receptor agonists acting at peripheral excitatory amino acid receptors can decrease the intensity of mechanical stimulation required to evoke nocifensive behaviors, an indication of hyperalgesia. Since excitatory amino acid receptors have been found on the terminal ends of cutaneous primary afferent fibers, it has been suggested that increased tissue glutamate levels may have a direct sensitizing effect on primary afferent fibers, in particular skin nociceptors. However, less is known about the effects of glutamate on deep tissue afferent fibers. In the present study, a series of experiments were undertaken to investigate the effect of intramuscular injection of glutamate on the excitability and mechanical threshold of masseter muscle afferent fibers in anesthetized rats of both sexes.Injection of 1.0 M, but not 0.1 M glutamate evoked masseter muscle afferent activity that was significantly greater than that evoked by isotonic saline. The mechanical threshold of masseter muscle afferent fibers, which was assessed with a Von Frey hair, was reduced by approximately 50% for a period of 30 min after injection of 1.0 M glutamate, but was unaffected by injections of 0.1 M glutamate or isotonic saline. Injection of 25% dextrose, which has the same osmotic strength as 1.0 M glutamate, did not evoke significant activity in or decrease the mechanical threshold of masseter muscle afferent fibers. Magnetic resonance imaging experiments confirmed that injection of 25% dextrose and 1.0 M glutamate produced similar edema volumes in the masseter muscle tissue. Co-injection of 0.1 M kynurenate, an excitatory amino acid receptor antagonist, and 1.0 M glutamate attenuated glutamate-evoked afferent activity and prevented glutamate-induced mechanical sensitization. When male and female rats were compared, no difference in the baseline mechanical threshold or in the magnitude of glutamate-induced mechanical sensitization of masseter muscle afferent fibers was observed; however, the afferent fiber activity evoked by injection of 1.0 M glutamate into the masseter muscle was greater in female rats.The results of the present experiments show that intramuscular injection of 1.0 M glutamate excites and sensitizes rat masseter muscle afferent fibers through activation of peripheral excitatory amino acid receptors and that glutamate-evoked afferent fiber activity, but not sensitization, is greater in female than male rats

    Glutamate-induced sensitization of rat masseter muscle fibers

    No full text
    Item does not contain fulltextIn rats, intradermal or intraarticular injection of glutamate or selective excitatory amino acid receptor agonists acting at peripheral excitatory amino acid receptors can decrease the intensity of mechanical stimulation required to evoke nocifensive behaviors, an indication of hyperalgesia. Since excitatory amino acid receptors have been found on the terminal ends of cutaneous primary afferent fibers, it has been suggested that increased tissue glutamate levels may have a direct sensitizing effect on primary afferent fibers, in particular skin nociceptors. However, less is known about the effects of glutamate on deep tissue afferent fibers. In the present study, a series of experiments were undertaken to investigate the effect of intramuscular injection of glutamate on the excitability and mechanical threshold of masseter muscle afferent fibers in anesthetized rats of both sexes.Injection of 1.0 M, but not 0.1 M glutamate evoked masseter muscle afferent activity that was significantly greater than that evoked by isotonic saline. The mechanical threshold of masseter muscle afferent fibers, which was assessed with a Von Frey hair, was reduced by approximately 50% for a period of 30 min after injection of 1.0 M glutamate, but was unaffected by injections of 0.1 M glutamate or isotonic saline. Injection of 25% dextrose, which has the same osmotic strength as 1.0 M glutamate, did not evoke significant activity in or decrease the mechanical threshold of masseter muscle afferent fibers. Magnetic resonance imaging experiments confirmed that injection of 25% dextrose and 1.0 M glutamate produced similar edema volumes in the masseter muscle tissue. Co-injection of 0.1 M kynurenate, an excitatory amino acid receptor antagonist, and 1.0 M glutamate attenuated glutamate-evoked afferent activity and prevented glutamate-induced mechanical sensitization. When male and female rats were compared, no difference in the baseline mechanical threshold or in the magnitude of glutamate-induced mechanical sensitization of masseter muscle afferent fibers was observed; however, the afferent fiber activity evoked by injection of 1.0 M glutamate into the masseter muscle was greater in female rats.The results of the present experiments show that intramuscular injection of 1.0 M glutamate excites and sensitizes rat masseter muscle afferent fibers through activation of peripheral excitatory amino acid receptors and that glutamate-evoked afferent fiber activity, but not sensitization, is greater in female than male rats

    Phylogenetic placement of Carex dianae Steud., a sedge endemic to the South Atlantic island of St Helena

    No full text
    Carex dianae Steud. is an endemic sedge of St Helena, an isolated island in the South Atlantic. Our study provides the first molecular sequence data for this taxon. We generated sequence data for plastid matK and trnK regions and nuclear ITS and ETS regions to determine the placement of C. dianae in the broader Carex phylogeny. The placement of C. dianae falls within Carex sect. Spirostachyae Drejer, and it is sister to a clade including Carex clavata Thunb., Carex aethiopica Schkuhr (both from the Cape region of S. Africa), and Carex gunniana Boott (southern Australia). The existence of three divergent nucleotype groups and two plastotypes is revealed from genetic variation within C. dianae. The results suggest that the ancestor of C. dianae likely originated in the Cape region of South Africa, followed by transoceanic dispersal to St Helena estimated at 4.4 - 4.9 Mya, likely by a bird vector. The most divergent population is that on an isolated hill known as “The Barn” which may represent a distinct taxon. The existence of highly structured molecular variation within an island only 16 km long is discussed
    corecore