6 research outputs found

    Range-separated double-hybrid density-functional theory with coupled-cluster and random-phase approximations

    Full text link
    We construct range-separated double-hybrid schemes which combine coupled-cluster or random-phase approximations with a density functional based on a two-parameter Coulomb-attenuating-method-like decomposition of the electron-electron interaction. We find that the addition of a fraction of short-range electron-electron interaction in the wave-function part of the calculation is globally beneficial for the range-separated double-hybrid scheme involving a variant of the random-phase approximation with exchange terms. Even though the latter scheme is globally as accurate as the corresponding scheme employing only second-order M{{\o}}ller-Plesset perturbation theory for atomization energies, reaction barrier heights, and weak intermolecular interactions of small molecules, it is more accurate for the more complicated case of the benzene dimer in the stacked configuration. The present range-separated double-hybrid scheme employing a random-phase approximation thus represents a new member in the family of double hybrids with minimal empiricism which could be useful for general chemical applications.Comment: arXiv admin note: text overlap with arXiv:1804.0337

    Topological description of hydration phenomena and development of range separated double-hybrid functionals

    Full text link
    Cette thĂšse s’intĂ©resse aux phĂ©nomĂšnes d’hydratation de composĂ©s organiques Ă  l’échelle molĂ©culaire. Des mĂ©thodes basĂ©es sur une fonction d’onde multi-dĂ©terminantale sont capables de rendre compte des phĂ©nomĂšnes de hydratation avec une prĂ©cision approchant la rĂ©alitĂ© expĂ©rimentale. Or, ces mĂ©thodes sont limitĂ©es par la taille du systĂšme. L’utilisation de la DFT semble indispensable Ă  une Ă©tude de complexes, mĂȘme pour un nombre limitĂ© de molĂ©cules d’eau. Il s’avĂšre que ces mĂ©thodes ne prennent pas en compte les interactions de nature dispersive. Des corrections empiriques ont Ă©tĂ© proposĂ©es rĂ©cemment pour palier Ă  ce problĂšme. Cependant, ces corrections ne s’appliquent qu’à l’énergie et sur la gĂ©omĂ©trie des complexes hydratĂ©es, la fonction d’onde n’étant pas affectĂ©e par la correction. D’autres alternatives pour la prise en compte des effets de dispersion reposent sur l’emploi de mĂ©thodes hybrides fonction d’onde/DFT. Ceci peut s’effectuer en introduisant une sĂ©paration de portĂ©e dans le traitement des interactions Ă©lectroniques. L’un des objectifs de cette thĂšse consiste Ă  proposer une nouvelle mĂ©thode double hybride Ă  sĂ©paration de portĂ©e permettant une bonne description des phĂ©nomĂšnes d’hydratation. L’autre objectif de cette thĂšse consiste Ă  utiliser des outils topologiques permettant la prĂ©diction de composĂ©s organiques hydratĂ© par l’étude du potentiel Ă©lectrostatique molĂ©culaire et la caractĂ©risation de ces interactions non covalentes par la thĂ©orie AIM.This thesis deals with hydration phenomena of organic compounds at the molecular scale. The Schrodinger equation considered within the Born-Oppenheimer approximation and within a non-relativistic context contains all the physics necessary to describe in particular the micro-solvation of organic compounds. Methods that are based on a multi-determinant wave function are able to account for micro-hydration phenomena with a precision approaching the experimental reality. These methods are limited by the size of the system. The use of DFT seems necessary for a study of complexes, even for a limited number of water molecules. It turns out that these methods do not take into account dispersive interactions. Empirical corrections have recently been proposed to address this problem. However, these corrections apply only to the energy and to the geometry of the hydrated complexes, the wave function not being affected by the correction. Other alternatives for taking into account dispersion effects using double-hybrid methods should thus be considered. This can be done by introducing a range separation on the electronic interactions. There are two main objectives in this thesis. The first one is to propose a new double-hybrid method with range separation allowing a satisfactorily description of the hydration phenomena at the molecular scale. The second objective consists in using topological tools allowing the prediction of hydrated organic compounds using the electrostatic molecular potential and the characterization of these non-covalent interactions by the "Atoms in molecules" theory

    Description topologique des phénomÚnes d'hydratation et développement méthodologique de fonctionnelles doubles hybrides à séparation de portée

    Full text link
    This thesis deals with hydration phenomena of organic compounds at the molecular scale. The Schrodinger equation considered within the Born-Oppenheimer approximation and within a non-relativistic context contains all the physics necessary to describe in particular the micro-solvation of organic compounds. Methods that are based on a multi-determinant wave function are able to account for micro-hydration phenomena with a precision approaching the experimental reality. These methods are limited by the size of the system. The use of DFT seems necessary for a study of complexes, even for a limited number of water molecules. It turns out that these methods do not take into account dispersive interactions. Empirical corrections have recently been proposed to address this problem. However, these corrections apply only to the energy and to the geometry of the hydrated complexes, the wave function not being affected by the correction. Other alternatives for taking into account dispersion effects using double-hybrid methods should thus be considered. This can be done by introducing a range separation on the electronic interactions. There are two main objectives in this thesis. The first one is to propose a new double-hybrid method with range separation allowing a satisfactorily description of the hydration phenomena at the molecular scale. The second objective consists in using topological tools allowing the prediction of hydrated organic compounds using the electrostatic molecular potential and the characterization of these non-covalent interactions by the "Atoms in molecules" theory.Cette thĂšse s’intĂ©resse aux phĂ©nomĂšnes d’hydratation de composĂ©s organiques Ă  l’échelle molĂ©culaire. Des mĂ©thodes basĂ©es sur une fonction d’onde multi-dĂ©terminantale sont capables de rendre compte des phĂ©nomĂšnes de hydratation avec une prĂ©cision approchant la rĂ©alitĂ© expĂ©rimentale. Or, ces mĂ©thodes sont limitĂ©es par la taille du systĂšme. L’utilisation de la DFT semble indispensable Ă  une Ă©tude de complexes, mĂȘme pour un nombre limitĂ© de molĂ©cules d’eau. Il s’avĂšre que ces mĂ©thodes ne prennent pas en compte les interactions de nature dispersive. Des corrections empiriques ont Ă©tĂ© proposĂ©es rĂ©cemment pour palier Ă  ce problĂšme. Cependant, ces corrections ne s’appliquent qu’à l’énergie et sur la gĂ©omĂ©trie des complexes hydratĂ©es, la fonction d’onde n’étant pas affectĂ©e par la correction. D’autres alternatives pour la prise en compte des effets de dispersion reposent sur l’emploi de mĂ©thodes hybrides fonction d’onde/DFT. Ceci peut s’effectuer en introduisant une sĂ©paration de portĂ©e dans le traitement des interactions Ă©lectroniques. L’un des objectifs de cette thĂšse consiste Ă  proposer une nouvelle mĂ©thode double hybride Ă  sĂ©paration de portĂ©e permettant une bonne description des phĂ©nomĂšnes d’hydratation. L’autre objectif de cette thĂšse consiste Ă  utiliser des outils topologiques permettant la prĂ©diction de composĂ©s organiques hydratĂ© par l’étude du potentiel Ă©lectrostatique molĂ©culaire et la caractĂ©risation de ces interactions non covalentes par la thĂ©orie AIM
    corecore