6 research outputs found
Range-separated double-hybrid density-functional theory with coupled-cluster and random-phase approximations
We construct range-separated double-hybrid schemes which combine
coupled-cluster or random-phase approximations with a density functional based
on a two-parameter Coulomb-attenuating-method-like decomposition of the
electron-electron interaction. We find that the addition of a fraction of
short-range electron-electron interaction in the wave-function part of the
calculation is globally beneficial for the range-separated double-hybrid scheme
involving a variant of the random-phase approximation with exchange terms. Even
though the latter scheme is globally as accurate as the corresponding scheme
employing only second-order M{{\o}}ller-Plesset perturbation theory for
atomization energies, reaction barrier heights, and weak intermolecular
interactions of small molecules, it is more accurate for the more complicated
case of the benzene dimer in the stacked configuration. The present
range-separated double-hybrid scheme employing a random-phase approximation
thus represents a new member in the family of double hybrids with minimal
empiricism which could be useful for general chemical applications.Comment: arXiv admin note: text overlap with arXiv:1804.0337
Topological description of hydration phenomena and development of range separated double-hybrid functionals
Cette thĂšse sâintĂ©resse aux phĂ©nomĂšnes dâhydratation de composĂ©s organiques Ă lâĂ©chelle molĂ©culaire. Des mĂ©thodes basĂ©es sur une fonction dâonde multi-dĂ©terminantale sont capables de rendre compte des phĂ©nomĂšnes de hydratation avec une prĂ©cision approchant la rĂ©alitĂ© expĂ©rimentale. Or, ces mĂ©thodes sont limitĂ©es par la taille du systĂšme. Lâutilisation de la DFT semble indispensable Ă une Ă©tude de complexes, mĂȘme pour un nombre limitĂ© de molĂ©cules dâeau. Il sâavĂšre que ces mĂ©thodes ne prennent pas en compte les interactions de nature dispersive. Des corrections empiriques ont Ă©tĂ© proposĂ©es rĂ©cemment pour palier Ă ce problĂšme. Cependant, ces corrections ne sâappliquent quâĂ lâĂ©nergie et sur la gĂ©omĂ©trie des complexes hydratĂ©es, la fonction dâonde nâĂ©tant pas affectĂ©e par la correction. Dâautres alternatives pour la prise en compte des effets de dispersion reposent sur lâemploi de mĂ©thodes hybrides fonction dâonde/DFT. Ceci peut sâeffectuer en introduisant une sĂ©paration de portĂ©e dans le traitement des interactions Ă©lectroniques. Lâun des objectifs de cette thĂšse consiste Ă proposer une nouvelle mĂ©thode double hybride Ă sĂ©paration de portĂ©e permettant une bonne description des phĂ©nomĂšnes dâhydratation. Lâautre objectif de cette thĂšse consiste Ă utiliser des outils topologiques permettant la prĂ©diction de composĂ©s organiques hydratĂ© par lâĂ©tude du potentiel Ă©lectrostatique molĂ©culaire et la caractĂ©risation de ces interactions non covalentes par la thĂ©orie AIM.This thesis deals with hydration phenomena of organic compounds at the molecular scale. The Schrodinger equation considered within the Born-Oppenheimer approximation and within a non-relativistic context contains all the physics necessary to describe in particular the micro-solvation of organic compounds. Methods that are based on a multi-determinant wave function are able to account for micro-hydration phenomena with a precision approaching the experimental reality. These methods are limited by the size of the system. The use of DFT seems necessary for a study of complexes, even for a limited number of water molecules. It turns out that these methods do not take into account dispersive interactions. Empirical corrections have recently been proposed to address this problem. However, these corrections apply only to the energy and to the geometry of the hydrated complexes, the wave function not being affected by the correction. Other alternatives for taking into account dispersion effects using double-hybrid methods should thus be considered. This can be done by introducing a range separation on the electronic interactions. There are two main objectives in this thesis. The first one is to propose a new double-hybrid method with range separation allowing a satisfactorily description of the hydration phenomena at the molecular scale. The second objective consists in using topological tools allowing the prediction of hydrated organic compounds using the electrostatic molecular potential and the characterization of these non-covalent interactions by the "Atoms in molecules" theory
Description topologique des phénomÚnes d'hydratation et développement méthodologique de fonctionnelles doubles hybrides à séparation de portée
This thesis deals with hydration phenomena of organic compounds at the molecular scale. The Schrodinger equation considered within the Born-Oppenheimer approximation and within a non-relativistic context contains all the physics necessary to describe in particular the micro-solvation of organic compounds. Methods that are based on a multi-determinant wave function are able to account for micro-hydration phenomena with a precision approaching the experimental reality. These methods are limited by the size of the system. The use of DFT seems necessary for a study of complexes, even for a limited number of water molecules. It turns out that these methods do not take into account dispersive interactions. Empirical corrections have recently been proposed to address this problem. However, these corrections apply only to the energy and to the geometry of the hydrated complexes, the wave function not being affected by the correction. Other alternatives for taking into account dispersion effects using double-hybrid methods should thus be considered. This can be done by introducing a range separation on the electronic interactions. There are two main objectives in this thesis. The first one is to propose a new double-hybrid method with range separation allowing a satisfactorily description of the hydration phenomena at the molecular scale. The second objective consists in using topological tools allowing the prediction of hydrated organic compounds using the electrostatic molecular potential and the characterization of these non-covalent interactions by the "Atoms in molecules" theory.Cette thĂšse sâintĂ©resse aux phĂ©nomĂšnes dâhydratation de composĂ©s organiques Ă lâĂ©chelle molĂ©culaire. Des mĂ©thodes basĂ©es sur une fonction dâonde multi-dĂ©terminantale sont capables de rendre compte des phĂ©nomĂšnes de hydratation avec une prĂ©cision approchant la rĂ©alitĂ© expĂ©rimentale. Or, ces mĂ©thodes sont limitĂ©es par la taille du systĂšme. Lâutilisation de la DFT semble indispensable Ă une Ă©tude de complexes, mĂȘme pour un nombre limitĂ© de molĂ©cules dâeau. Il sâavĂšre que ces mĂ©thodes ne prennent pas en compte les interactions de nature dispersive. Des corrections empiriques ont Ă©tĂ© proposĂ©es rĂ©cemment pour palier Ă ce problĂšme. Cependant, ces corrections ne sâappliquent quâĂ lâĂ©nergie et sur la gĂ©omĂ©trie des complexes hydratĂ©es, la fonction dâonde nâĂ©tant pas affectĂ©e par la correction. Dâautres alternatives pour la prise en compte des effets de dispersion reposent sur lâemploi de mĂ©thodes hybrides fonction dâonde/DFT. Ceci peut sâeffectuer en introduisant une sĂ©paration de portĂ©e dans le traitement des interactions Ă©lectroniques. Lâun des objectifs de cette thĂšse consiste Ă proposer une nouvelle mĂ©thode double hybride Ă sĂ©paration de portĂ©e permettant une bonne description des phĂ©nomĂšnes dâhydratation. Lâautre objectif de cette thĂšse consiste Ă utiliser des outils topologiques permettant la prĂ©diction de composĂ©s organiques hydratĂ© par lâĂ©tude du potentiel Ă©lectrostatique molĂ©culaire et la caractĂ©risation de ces interactions non covalentes par la thĂ©orie AIM