227 research outputs found
Fundamental Limits of Caching in Wireless D2D Networks
We consider a wireless Device-to-Device (D2D) network where communication is
restricted to be single-hop. Users make arbitrary requests from a finite
library of files and have pre-cached information on their devices, subject to a
per-node storage capacity constraint. A similar problem has already been
considered in an ``infrastructure'' setting, where all users receive a common
multicast (coded) message from a single omniscient server (e.g., a base station
having all the files in the library) through a shared bottleneck link. In this
work, we consider a D2D ``infrastructure-less'' version of the problem. We
propose a caching strategy based on deterministic assignment of subpackets of
the library files, and a coded delivery strategy where the users send linearly
coded messages to each other in order to collectively satisfy their demands. We
also consider a random caching strategy, which is more suitable to a fully
decentralized implementation. Under certain conditions, both approaches can
achieve the information theoretic outer bound within a constant multiplicative
factor. In our previous work, we showed that a caching D2D wireless network
with one-hop communication, random caching, and uncoded delivery, achieves the
same throughput scaling law of the infrastructure-based coded multicasting
scheme, in the regime of large number of users and files in the library. This
shows that the spatial reuse gain of the D2D network is order-equivalent to the
coded multicasting gain of single base station transmission. It is therefore
natural to ask whether these two gains are cumulative, i.e.,if a D2D network
with both local communication (spatial reuse) and coded multicasting can
provide an improved scaling law. Somewhat counterintuitively, we show that
these gains do not cumulate (in terms of throughput scaling law).Comment: 45 pages, 5 figures, Submitted to IEEE Transactions on Information
Theory, This is the extended version of the conference (ITW) paper
arXiv:1304.585
Energy-Delay Tradeoff and Dynamic Sleep Switching for Bluetooth-Like Body-Area Sensor Networks
Wireless technology enables novel approaches to healthcare, in particular the
remote monitoring of vital signs and other parameters indicative of people's
health. This paper considers a system scenario relevant to such applications,
where a smart-phone acts as a data-collecting hub, gathering data from a number
of wireless-capable body sensors, and relaying them to a healthcare provider
host through standard existing cellular networks. Delay of critical data and
sensors' energy efficiency are both relevant and conflicting issues. Therefore,
it is important to operate the wireless body-area sensor network at some
desired point close to the optimal energy-delay tradeoff curve. This tradeoff
curve is a function of the employed physical-layer protocol: in particular, it
depends on the multiple-access scheme and on the coding and modulation schemes
available. In this work, we consider a protocol closely inspired by the
widely-used Bluetooth standard. First, we consider the calculation of the
minimum energy function, i.e., the minimum sum energy per symbol that
guarantees the stability of all transmission queues in the network. Then, we
apply the general theory developed by Neely to develop a dynamic scheduling
policy that approaches the optimal energy-delay tradeoff for the network at
hand. Finally, we examine the queue dynamics and propose a novel policy that
adaptively switches between connected and disconnected (sleeping) modes. We
demonstrate that the proposed policy can achieve significant gains in the
realistic case where the control "NULL" packets necessary to maintain the
connection alive, have a non-zero energy cost, and the data arrival statistics
corresponding to the sensed physical process are bursty.Comment: Extended version (with proofs details in the Appendix) of a paper
accepted for publication on the IEEE Transactions on Communication
Bit-interleaved coded modulation in the wideband regime
The wideband regime of bit-interleaved coded modulation (BICM) in Gaussian
channels is studied. The Taylor expansion of the coded modulation capacity for
generic signal constellations at low signal-to-noise ratio (SNR) is derived and
used to determine the corresponding expansion for the BICM capacity. Simple
formulas for the minimum energy per bit and the wideband slope are given. BICM
is found to be suboptimal in the sense that its minimum energy per bit can be
larger than the corresponding value for coded modulation schemes. The minimum
energy per bit using standard Gray mapping on M-PAM or M^2-QAM is given by a
simple formula and shown to approach -0.34 dB as M increases. Using the low SNR
expansion, a general trade-off between power and bandwidth in the wideband
regime is used to show how a power loss can be traded off against a bandwidth
gain.Comment: Submitted to IEEE Transactions on Information Theor
Bit-Interleaved Coded Modulation Revisited: A Mismatched Decoding Perspective
We revisit the information-theoretic analysis of bit-interleaved coded
modulation (BICM) by modeling the BICM decoder as a mismatched decoder. The
mismatched decoding model is well-defined for finite, yet arbitrary, block
lengths, and naturally captures the channel memory among the bits belonging to
the same symbol. We give two independent proofs of the achievability of the
BICM capacity calculated by Caire et al. where BICM was modeled as a set of
independent parallel binary-input channels whose output is the bitwise
log-likelihood ratio. Our first achievability proof uses typical sequences, and
shows that due to the random coding construction, the interleaver is not
required. The second proof is based on the random coding error exponents with
mismatched decoding, where the largest achievable rate is the generalized
mutual information. We show that the generalized mutual information of the
mismatched decoder coincides with the infinite-interleaver BICM capacity. We
also show that the error exponent -and hence the cutoff rate- of the BICM
mismatched decoder is upper bounded by that of coded modulation and may thus be
lower than in the infinite-interleaved model. We also consider the mutual
information appearing in the analysis of iterative decoding of BICM with EXIT
charts. We show that the corresponding symbol metric has knowledge of the
transmitted symbol and the EXIT mutual information admits a representation as a
pseudo-generalized mutual information, which is in general not achievable. A
different symbol decoding metric, for which the extrinsic side information
refers to the hypothesized symbol, induces a generalized mutual information
lower than the coded modulation capacity.Comment: submitted to the IEEE Transactions on Information Theory. Conference
version in 2008 IEEE International Symposium on Information Theory, Toronto,
Canada, July 200
- …