53 research outputs found

    Noncommunicable disease and multimorbidity in young adults with cerebral palsy

    Get PDF
    Purpose: Individuals with cerebral palsy (CP) are at increased risk for frailty and chronic disease due to factors experienced throughout the lifespan, such as excessive sedentary behaviors and malnutrition. However, little is known about noncommunicable diseases (NCDs) and multimorbidity profiles in young adults with CP. The study objective was to compare NCD and multimorbidity profiles between young adults with and without CP. Methods: A clinic-based sample of adults (18–30 years) with (n=452) and without (n=448) CP was examined at the University of Michigan Medical Center. The prevalence and predictors of 13 NCDs were evaluated, including existing diagnoses or historical record of musculoskeletal, cardiometabolic, and pulmonary morbidities. The level of motor impairment was determined by the Gross Motor Function Classification System (GMFCS) and stratified by less vs more severe motor impairment (GMFCS I–III vs IV–V). Logistic regression was used to determine the odds of NCD morbidity and multimorbidity in adults with CP compared to adults without CP, and for GMFCS IV–V compared to GMFCS I–III in those with CP, after adjusting for age, sex, body mass index, and smoking. Results: Adults with CP had a higher prevalence of osteopenia, osteoporosis, hypertension, myocardial infarction, hyperlipidemia, asthma, and multimorbidity compared to adults without CP, and higher odds of musculoskeletal (odds ratio [OR]: 6.97) and cardiometabolic morbidity (OR: 1.98), and multimorbidity (OR: 2.67). Adults with CP with GMFCS levels IV–V had a higher prevalence of osteopenia/osteoporosis, osteoarthritis, hypertension, other cardiovascular conditions, pulmonary embolism, and multimorbidity, and higher odds of musculoskeletal (OR: 3.41), cardiometabolic (OR: 2.05), pulmonary morbidity (OR: 1.42), and multimorbidity (OR: 3.45) compared to GMFCS I–III. Conclusion: Young adults with CP have a higher prevalence of chronic NCDs and multimorbidity compared to young adults without CP, which is pronounced in those with more severe motor impairment. These findings reiterate the importance of early screening for prevention of NCDs in CPNational Institutes of Health (NIH) and the National Institute on Disability, Independent Living, and Rehabilitation Research (NIDILRR

    Tibial torus and toddler's fractures misdiagnosed as transient synovitis: a case series

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>The high incidence of transient synovitis in early childhood makes it the first suspected pathology in a limping child. Trauma, which has long been regarded as a causative factor for transient synovitis, may be underestimated in a non-cooperative toddler.</p> <p>After excluding most serious conditions, such as septic arthritis, a speculative diagnosis of transient synovitis can be made, and this can easily mask a subtle musculoskeletal injury.</p> <p>Case presentations</p> <p>We report the cases of three Caucasian patients (two boys, aged 20-months- and three-years-old, and one girl, aged two-years-old), with tibial torus and toddler's fractures which were late-diagnosed due to an initial misdiagnosis of transient synovitis of the hip.</p> <p>Conclusion</p> <p>In a non-cooperative child musculoskeletal trauma can be mistaken as a simple causative factor for transient synovitis of the hip and this can easily prevent further investigation for a possible subtle musculoskeletal injury of the lower extremities.</p> <p>Our experience with the presented cases suggests the need to be more vigilant in the differential diagnosis of transient synovitis in young children.</p

    Periodontal disease in a patient with Prader-Willi syndrome: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Prader-Willi syndrome is a complex genetic disease caused by lack of expression of paternally inherited genes on chromosome 15q11-q13. The prevalence of Prader-Willi syndrome is estimated to be one in 10,000 to 25,000. However, descriptions of the oral and dental phenotype are rare.</p> <p>Case presentation</p> <p>We describe the clinical presentation and periodontal findings in a 20-year-old Japanese man with previously diagnosed Prader-Willi syndrome. Clinical and radiographic findings confirmed the diagnosis of periodontitis. The most striking oral findings were anterior open bite, and crowding and attrition of the lower first molars. Periodontal treatment consisted of tooth-brushing instruction and scaling. Home care involved recommended use of adjunctive chlorhexidine gel for tooth brushing twice a week and chlorhexidine mouthwash twice daily. Gingival swelling improved, but further treatment will be required and our patient's oral hygiene remains poor. The present treatment of tooth-brushing instruction and scaling every three weeks therefore only represents a temporary solution.</p> <p>Conclusions</p> <p>Rather than being a direct result of genetic defects, periodontal diseases in Prader-Willi syndrome may largely result from a loss of cuspid guidance leading to traumatic occlusion, which in turn leads to the development of periodontal diseases and dental plaque because of poor oral hygiene. These could be avoided by early interventions to improve occlusion and regular follow-up to monitor oral hygiene. This report emphasizes the importance of long-term follow-up of oral health care by dental practitioners, especially pediatric dentists, to prevent periodontal disease and dental caries in patients with Prader-Willi syndrome, who appear to have problems maintaining their own oral health.</p

    Clinical practice: The care of children with Down syndrome

    Get PDF
    Down syndrome (DS) is one of the most common chromosomal abnormalities. Because of medical advances and improvements in overall medical care, the median survival of individuals with DS has increased considerably. This longer life expectancy requires giving the necessary care to the individual with DS over their total longer lifespan. DS medical guidelines are designed for the optimal care of the child in whom a diagnosis of DS has been confirmed. We present an overview of the most important issues related to children with DS based on the most relevant literature currently available

    A second generation genetic map for rainbow trout (Oncorhynchus mykiss)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genetic maps characterizing the inheritance patterns of traits and markers have been developed for a wide range of species and used to study questions in biomedicine, agriculture, ecology and evolutionary biology. The status of rainbow trout genetic maps has progressed significantly over the last decade due to interest in this species in aquaculture and sport fisheries, and as a model research organism for studies related to carcinogenesis, toxicology, comparative immunology, disease ecology, physiology and nutrition. We constructed a second generation genetic map for rainbow trout using microsatellite markers to facilitate the identification of quantitative trait loci for traits affecting aquaculture production efficiency and the extraction of comparative information from the genome sequences of model fish species.</p> <p>Results</p> <p>A genetic map ordering 1124 microsatellite loci spanning a sex-averaged distance of 2927.10 cM (Kosambi) and having 2.6 cM resolution was constructed by genotyping 10 parents and 150 offspring from the National Center for Cool and Cold Water Aquaculture (NCCCWA) reference family mapping panel. Microsatellite markers, representing pairs of loci resulting from an evolutionarily recent whole genome duplication event, identified 180 duplicated regions within the rainbow trout genome. Microsatellites associated with genes through expressed sequence tags or bacterial artificial chromosomes produced comparative assignments with tetraodon, zebrafish, fugu, and medaka resulting in assignments of homology for 199 loci.</p> <p>Conclusion</p> <p>The second generation NCCCWA genetic map provides an increased microsatellite marker density and quantifies differences in recombination rate between the sexes in outbred populations. It has the potential to integrate with cytogenetic and other physical maps, identifying paralogous regions of the rainbow trout genome arising from the evolutionarily recent genome duplication event, and anchoring a comparative map with the zebrafish, medaka, tetraodon, and fugu genomes. This resource will facilitate the identification of genes affecting traits of interest through fine mapping and positional cloning of candidate genes.</p
    corecore