32 research outputs found

    Grape Seed Proanthocyanidin Extract Prevents Ovarian Aging by Inhibiting Oxidative Stress in the Hens

    Get PDF
    Oxidative stress is an important inducement in ovarian aging which results in fecundity decline in human and diverse animals. As a potent antioxidant, grape seed proanthocyanidin extract (GSPE) was investigated to ameliorate chicken ovarian aging in this study. Firstly, ovarian antioxidant capacity of hens at different ages (90, 150, 280, and 580 days old) was compared to elucidate its age-related changes. Subsequently, a D-gal-induced (2.5 mg/mL) aging ovarian model was established and the cultured ovarian tissues were treated with GSPE at 5 μg/mL for 72 h to evaluate the putative attenuating effects of GSPE on ovarian aging. Meanwhile, ovaries of D280 (young) and D580 (old) were treated with GSPE for 72 h in culture to verify the protective effects of GSPE on natural aging ovary. The results showed that GSPE could rescue the antioxidant capacity decline by increasing the antioxidase activities and their gene expression in either D-gal-induced or natural aging ovaries. Moreover, GSPE could maintain the homeostasis between cell proliferation and apoptosis in the D-gal-induced and natural aging ovaries, as well as alleviate D-gal-induced nucleus chromatin condensation in the ovarian granulosa cells. In conclusion, GSPE treatment can effectively prevent the ovarian aging process in hens by reducing oxidative stress

    Interaction of Follicle-Stimulating Hormone and Stem Cell Factor to Promote Primordial Follicle Assembly in the Chicken

    Get PDF
    Follicle-stimulating hormone (FSH) and KIT signaling are required for ovarian development. In this study the interactive effect of FSH and stem cell factor (SCF) on folliculogenesis was investigated in the chicken. Correlated changes between the FSH receptor and the expression of KIT signaling genes were seen to be involved in the formation of the chicken primordial follicles. Follicle-stimulating hormone and SCF displayed a reciprocal stimulating effect in the promotion of folliculogenesis involving elevated phosphorylation of mitogen-activated protein kinases (MAPK) and protein kinase B (AKT) proteins. Knockdown of c-KIT or SCF reduced the stimulatory effect of FSH on KIT signaling as well as upon MAPK and AKT phosphorylation. Treatment of FSH and SCF in combination enhanced ovarian cell proliferation and N-cadherin expression, but inhibited cell apoptosis and E-cadherin expression. Overall, the reciprocal stimulating effect of FSH and SCF in promoting chicken follicle assembly involving accelerated ovarian cell proliferation, N-cadherin expression, inhibited cell apoptosis, and E-cadherin expression is demonstrated

    Follicle-Stimulating Hormone Alleviates Ovarian Aging by Modulating Mitophagy- and Glycophagy-Based Energy Metabolism in Hens

    No full text
    As a predominant hormone in the reproductive axis, follicle-stimulating hormone (FSH) is known as the primary surviving factor for follicular growth. In this study, the alleviating effect of FSH on aging chicken granulosa cells (GCs) was investigated. Results showed that FSH activated mitophagy and relieved mitochondrial edema in D-gal-induced senescent GCs, which was evidenced by an increased number of mitophagosomes as well as increased mitochondria-light chain 3 (LC3) colocalization. Mitophagy activation was accompanied by the activation of the AMP-activated protein kinase (AMPK) signaling pathway. Furthermore, upregulated glycophagy was demonstrated by an increased interaction of starch-binding domain protein 1 (STBD1) with GABA type A receptor-associated protein-like 1 (GABARAPL1) in D-gal-induced senescent GCs. FSH treatment further promoted glycophagy, accompanied by PI3K/AKT activation. PI3K inhibitor LY294002 and AKT inhibitor GSK690693 attenuated the effect of FSH on glycophagy and glycolysis. The inhibition of FSH-mediated autophagy attenuated the protective effect of FSH on naturally aging GC proliferation and glycolysis. The simultaneous blockage of PI3K/AKT and AMPK signaling also abolished the positive effect of FSH on naturally senescent ovarian energy regulation. These data reveal that FSH prevents chicken ovarian aging by modulating glycophagy- and mitophagy-based energy metabolism through the PI3K/AKT and AMPK pathways

    The Attenuating Effect of the Intraovarian Bone Morphogenetic Protein 4 on Age-Related Endoplasmic Reticulum Stress in Chicken Follicular Cells

    No full text
    In the poultry, only less than 5% primordial follicles in the ovary can develop into the prehierarchical follicles (PHFs) leading to progressive development, ovulation, and egg formation. This low rate of recruitment indicates a huge potential for improvement of the laying performance. A great reduction in egg production is caused by aging with extensive follicular atresia. In this study, age-related changes in the laying performance and ovarian status were compared between the peak-lay (D280) and aged (D580) chickens. Subsequently, a cross coculture of PHFs and granulosa cells (GCs) from D280 or D580 hens was adopted to reveal the mechanism of declined follicle development. Results showed that persistent endoplasmic reticulum (ER) stress in GCs of the aged hens was accompanied with intensified apoptosis. Bone morphogenetic protein 4 (BMP4) secreted by GCs of PHFs in D280 hens was capable of relieving ER stress and improving follicular dominance for selection in D580 hens. During this action, BMP4 reduced free calreticulin (CALR, an ER marker) content and attenuated cell apoptosis in PHFs of D580 hens via the PERK-CHOP-BCL2/caspase3 or CALR-Ca2+-BCL2-caspase12 pathway. Furthermore, BMP4 prevented follicular atresia by promoting production of steroid hormones to improve survival of GCs in PHFs from the aged hens. In conclusion, intensified ER stress and apoptosis occurred in GCs of PHFs in aged chickens, while BMP4 secreted by GCs was capable of improving follicular viability by alleviating ER stress to promote follicular development

    Protective Effect of Follicle-Stimulating Hormone on DNA Damage of Chicken Follicular Granulosa Cells by Inhibiting CHK2/p53

    No full text
    The increase in follicular atresia and the decrease in the fecundity of laying hens occur with the aging process. Therefore, the key measure for maintaining high laying performance is to alleviate follicular atresia in the aging poultry. Follicle-stimulating hormone (FSH), as an important pituitary hormone to promote follicle development and maturation, plays an important role in preventing reproductive aging in diverse animals. In this study, the physiological state of the prehierarchical small white follicles (SWFs) and atretic SWFs (ASWFs) were compared, followed by an exploration of the possible capacity of FSH to delay ASWFs’ progression in the hens. The results showed that the DNA damage within follicles increased with aging, along with Golgi complex disintegration, cell cycle arrest, increased apoptosis and autophagy in the ASWFs. Subsequently, the ACNU-induced follicular atresia model was established to evaluate the enhancing capacity of FSH on increasing cell proliferation and attenuating apoptosis in ASWFs. FSH inhibited DNA damage and promoted DNA repair by regulating the CHK2/p53 pathway. Furthermore, FSH inhibited CHK2/p53, thus, suppressing the disintegration of the Golgi complex, cell cycle arrest, and increased autophagy in the atretic follicles. Moreover, these effects from FSH treatment in ACNU-induced granulosa cells were similar to the treatment by a DNA repair agent AV-153. These results indicate that FSH protects aging-resulted DNA damage in granulosa cells by inhibiting CHK2/p53 in chicken prehierarchical follicles
    corecore