161 research outputs found
Anatomical subgroup analysis of the MERIDIAN cohort: failed commissuration
Objective: To assess the contribution of in utero magnetic resonance (iuMR) imaging in fetuses diagnosed with either agenesis of the corpus callosum or hypogenesis of the corpus callosum (grouped as failed commissuration) on antenatal ultrasonography (USS) from the MERIDIAN cohort.
Methods: We report a sub-group analysis of fetuses with failed commissuration diagnosed on USS (with or without ventriculomegaly) from the MERIDIAN study who had iuMR imaging within 2 weeks of USS and outcome reference data were available. The diagnostic accuracy of USS and iuMR are reported as well as indicators of diagnostic confidence and effects on prognosis/clinical management.
Results: 79 fetuses with failed commissuration are reported (55 with agenesis and 24 with hypogenesis as the USS diagnoses). The diagnostic accuracy for detecting ‘failed commissuration’ as a group label was 34.2% for USS and 94.9% for iuMR (difference = 60.7%, 95% confidence interval 47.6% to 73.9%, p < 0.0001). The diagnostic accuracy for detecting hypogenesis of the corpus callosum as a discrete entity was 8.3% for USS and 87.5% for iuMR whilst the diagnostic accuracy for detecting agenesis of the corpus callosum as a distinct entity was 40.0% for USS and 92.7% for iuMR. There was a statistically significant improvement in ‘appropriate’ diagnostic confidence when using iuMR imaging as assessed by a score-based weighted average’ method (p < 0.0001). Prognostic information given to the women changed in 36/79 (45.6%) cases after iuMR imaging and its overall effect on clinical management was ‘significant’, ‘major’ or ‘decisive’ in 35/79 cases (44.3%).
Conclusions: Our data suggests that any woman whose fetus has failed commissuration as the only intracranial finding detected on USS should have iuMR imaging for further evaluation
Ecological Invasion, Roughened Fronts, and a Competitor's Extreme Advance: Integrating Stochastic Spatial-Growth Models
Both community ecology and conservation biology seek further understanding of
factors governing the advance of an invasive species. We model biological
invasion as an individual-based, stochastic process on a two-dimensional
landscape. An ecologically superior invader and a resident species compete for
space preemptively. Our general model includes the basic contact process and a
variant of the Eden model as special cases. We employ the concept of a
"roughened" front to quantify effects of discreteness and stochasticity on
invasion; we emphasize the probability distribution of the front-runner's
relative position. That is, we analyze the location of the most advanced
invader as the extreme deviation about the front's mean position. We find that
a class of models with different assumptions about neighborhood interactions
exhibit universal characteristics. That is, key features of the invasion
dynamics span a class of models, independently of locally detailed demographic
rules. Our results integrate theories of invasive spatial growth and generate
novel hypotheses linking habitat or landscape size (length of the invading
front) to invasion velocity, and to the relative position of the most advanced
invader.Comment: The original publication is available at
www.springerlink.com/content/8528v8563r7u2742
The Role of Power-Law Correlated Disorder in the Anderson Metal-Insulator Transition
We study the influence of scale-free correlated disorder on the
metal-insulator transition in the Anderson model of localization. We use
standard transfer matrix calculations and perform finite-size scaling of the
largest inverse Lyapunov exponent to obtain the localization length for
respective 3D tight-binding systems. The density of states is obtained from the
full spectrum of eigenenergies of the Anderson Hamiltonian. We discuss the
phase diagram of the metal-insulator transition and the influence of the
correlated disorder on the critical exponents.Comment: 6 pages, 3 figure
Engineered immunogens to elicit antibodies against conserved coronavirus epitopes
Immune responses to SARS-CoV-2 primarily target the receptor binding domain of the spike protein, which continually mutates to escape acquired immunity. Other regions in the spike S2 subunit, such as the stem helix and the segment encompassing residues 815-823 adjacent to the fusion peptide, are highly conserved across sarbecoviruses and are recognized by broadly reactive antibodies, providing hope that vaccines targeting these epitopes could offer protection against both current and emergent viruses. Here we employ computational modeling to design scaffolded immunogens that display the spike 815-823 peptide and the stem helix epitopes without the distracting and immunodominant receptor binding domain. These engineered proteins bind with high affinity and specificity to the mature and germline versions of previously identified broadly protective human antibodies. Epitope scaffolds interact with both sera and isolated monoclonal antibodies with broadly reactivity from individuals with pre-existing SARS-CoV-2 immunity. When used as immunogens, epitope scaffolds elicit sera with broad betacoronavirus reactivity and protect as “boosts” against live virus challenge in mice, illustrating their potential as components of a future pancoronavirus vaccine
Epidemiology, practice of ventilation and outcome for patients at increased risk of postoperative pulmonary complications
BACKGROUND Limited information exists about the epidemiology and outcome of surgical patients at increased risk of postoperative pulmonary complications (PPCs), and how intraoperative ventilation was managed in these patients.
OBJECTIVES To determine the incidence of surgical patients at increased risk of PPCs, and to compare the intraoperative ventilation management and postoperative outcomes with patients at low risk of PPCs.
DESIGN This was a prospective international 1-week observational study using the ‘Assess Respiratory Risk in Surgical Patients in Catalonia risk score’ (ARISCAT score) for PPC for risk stratification.
PATIENTS AND SETTING Adult patients requiring intraoperative ventilation during general anaesthesia for surgery in 146 hospitals across 29 countries.
MAIN OUTCOME MEASURES The primary outcome was the incidence of patients at increased risk of PPCs based on the ARISCAT score. Secondary outcomes included intraoperative ventilatory management and clinical outcomes.
RESULTS A total of 9864 patients fulfilled the inclusion criteria. The incidence of patients at increased risk was 28.4%. The most frequently chosen tidal volume (VT) size was 500 ml, or 7 to 9 ml kg1 predicted body weight, slightly lower in patients at increased risk of PPCs. Levels of positive end-expiratory pressure (PEEP) were slightly higher in patients at increased risk of PPCs, with 14.3% receiving more than 5 cmH2O PEEP compared with 7.6% in patients at low risk of PPCs (P < 0.001). Patients with a predicted preoperative increased risk of PPCs developed PPCs more frequently: 19 versus 7%, relative risk (RR) 3.16 (95% confidence interval 2.76 to 3.61), P < 0.001) and had longer hospital stays. The only ventilatory factor associated with the occurrence of PPCs was the peak pressure.
CONCLUSION The incidence of patients with a predicted increased risk of PPCs is high. A large proportion of patients receive high VT and low PEEP levels. PPCs occur frequently in patients at increased risk, with worse clinical outcome
On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection
A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)
- …