10 research outputs found

    Role of serosal cavity resident leukocytes in the orchestration of leukocyte recruitment following the induction of experimental inflammation

    Get PDF
    This study evaluated the role of resident peritoneal and pleural macrophages (Mφ) in neutrophil (PMN) recruitment in acute peritoneal and pleural inflammation. I also investigated the role of lymphocytes (Lρ) in peritoneal inflammation by studying experimental peritonitis in mice deficient in various Lρ populations.The conditional M(t> ablation mice used in these studies are transgenic for the human diphtheria toxin receptor (DTR) under the CDllb promoter (CDllb-DTR mice) and exhibit >97% depletion of resident serosal Mφ following intraperitoneal (IP) administration of diphtheria toxin (DT). I determined leukocyte numbers by flow cytometry in peritoneal or pleural lavage exudates at various time points after the initiation of inflammation with various agents following Mφ depletion (peritoneum: Brewer's thioglycollate [BTG], zymosan; pleural cavity: carrageenan and fixed staphylococci). I also induced BTG peritonitis in RAG-1 knockout (KO) mice (mature B and T Lρ deficient), NUDE mice (T Lρ deficient), μMT mice (B Lρ deficient) and their respective controls.Mφ ablation markedly inhibited peritoneal and pleural PMN recruitment at early time points compared to wild type (WT) controls. Administration of Mφ-rich resident cells, unlike Mφ-depleted resident cells, significantly restored PMN infiltration. Analysis of PMN C-X-C chemokines in lavage exudate showed that Mφ-depleted mice had significantly reduced levels of peritoneal and pleural MIP-2 and KC at the lhr time point compared to control mice with more marked MIP-2 reduction compared to KC (>90% reduction vs 25-40%). Reduced levels of monocyte C-C chemokine and various cytokines were evident in the Mφ-depleted ii mice at early time points. In vitro studies demonstrated that the production of these chemokines and cytokines from peritoneal and pleural cells was Mφ-dependent. RAG-1 KO mice exhibited increased early PMN infiltration and blunted Mφ infiltration. NUDE exhibited increased early PMN infiltration and increased Mφ infiltration whilst pMT KO mice exhibited decreased PMN influx and a reduced Mφ influx. Although chemokine analysis of peritoneal exudates in RAG-1 KO mice and NUDE mice demonstrated some differences in MCP-1 levels, there were no clear differences evident in μMT KO mice.These data suggest that resident Mφ play a pivotal role in the orchestration of PMN infiltration with Mφ-dependent production of MIP-2 being important. The data suggests that Lρ can modulate leukocyte recruitment in experimental peritonitis with T cells possibly acting as suppressor cells and B cells facilitating Mφ recruitment. However, the exact mechanisms of Lρ action remain elusive

    NRF2 Deficiency Attenuates Diabetic Kidney Disease in Db/Db Mice via Down-Regulation of Angiotensinogen, SGLT2, CD36, and FABP4 Expression and Lipid Accumulation in Renal Proximal Tubular Cells

    Full text link
    The role(s) of nuclear factor erythroid 2-related factor 2 (NRF2) in diabetic kidney disease (DKD) is/are controversial. We hypothesized that Nrf2 deficiency in type 2 diabetes (T2D) db/db mice (db/dbNrf2 knockout (KO)) attenuates DKD progression through the down-regulation of angiotensinogen (AGT), sodium-glucose cotransporter-2 (SGLT2), scavenger receptor CD36, and fatty -acid-binding protein 4 (FABP4), and lipid accumulation in renal proximal tubular cells (RPTCs). Db/dbNrf2 KO mice were studied at 16 weeks of age. Human RPTCs (HK2) with NRF2 KO via CRISPR-Cas9 genome editing and kidneys from patients with or without T2D were examined. Compared with db/db mice, db/dbNrf2 KO mice had lower systolic blood pressure, fasting blood glucose, kidney hypertrophy, glomerular filtration rate, urinary albumin/creatinine ratio, tubular lipid droplet accumulation, and decreased expression of AGT, SGLT2, CD36, and FABP4 in RPTCs. Male and female mice had similar results. NRF2 KO attenuated the stimulatory effect of the Nrf2 activator, oltipraz, on AGT, SGLT2, and CD36 expression and high-glucose/free fatty acid (FFA)-stimulated lipid accumulation in HK2. Kidneys from T2D patients exhibited markedly higher levels of CD36 and FABP4 in RPTCs than kidneys from non-diabetic patients. These data suggest that NRF2 exacerbates DKD through the stimulation of AGT, SGLT2, CD36, and FABP4 expression and lipid accumulation in RPTCs of T2D

    Nitric Oxide Is an Important Mediator of Renal Tubular Epithelial Cell Death in Vitro and in Murine Experimental Hydronephrosis

    Get PDF
    Macrophages play a pivotal role in tissue injury and fibrosis during renal inflammation. Although macrophages may induce apoptosis of renal tubular epithelial cells, the mechanisms involved are unclear. We used a microscopically quantifiable co-culture assay to dissect the cytotoxic interaction between murine bone marrow-derived macrophages and Madin-Darby canine kidney cells and primary murine renal tubular epithelial cells. The induction of tubular cell apoptosis by cytokine-activated macrophages was reduced by inhibitors of nitric oxide synthase whereas tubular cell proliferation was unaffected. Furthermore, cytokine-activated macrophages derived from mice targeted for the deletion of inducible nitric oxide synthase were noncytotoxic. We then examined the role of nitric oxide in vivo by inhibiting inducible nitric oxide synthase in the model of murine experimental hydronephrosis. l-N(6)-(1-iminoethyl)-lysine was administered in the drinking water between days 5 and 7 after ureteric obstruction. Macrophage infiltration was comparable between groups, but treatment significantly inhibited tubular cell apoptosis at day 7. Tubular cell proliferation was unaffected. Inducible nitric oxide synthase blockade also reduced interstitial cell apoptosis and increased collagen III deposition. These data indicate that nitric oxide is a key mediator of macrophage-directed tubular cell apoptosis in vitro and in vivo and also modulates tubulointerstitial fibrosis

    Diagnostic Potential of Coagulation-Related Biomarkers for Sepsis in the Emergency Department: Protocol for a Pilot Observational Cohort Study

    Full text link
    Background:. Between 75% and 80% of patients with sepsis arrive in the hospital through the emergency department. Early diagnosis is important to alter patient prognosis, but currently, there is no reliable biomarker. The innate immune response links inflammation and coagulation. Several coagulation -related biomarkers are associated with poor prognosis in the ICU. The role of coagulation biomarkers to aid in early sepsis diagnosis has not previously been investigated. The objective of our study is to determine the individual or combined accuracy of coagulation and inflammation biomarkers with standard biochemical tests to diagnose adult septic patients presenting to the emergency department. Methods:. in the Emergency Department is a prospective, observational cohort study with a target enrolment of 250 suspected septic patients from two Canadian emergency departments. The emergency physicians will enroll patients with suspected sepsis. Blood samples will be collected at two time points (initial presentation and 4 hr following). Patients will be adjudicated into septic, infected, or not infected status in accordance with the Sepsis-3 definitions. Patient demographics, cultures, diagnosis, and biomarkers will be reported using descriptive statistics. Optimal cut off values with sensitivity and specificity for each biomarker will be determined using C-statistics to distinguish between septic and nonseptic patients. Stepwise multiple logistic regression analysis with exclusion of nonsignificant covariates from the final model will be used to establish a panel of biomarkers. Conclusions:. Our protocol describes the processes and methods for a pragmatic observational biomarker study in the emergency department. This study will seek to determine the potential diagnostic importance of early coagulation abnormalities to identify additional tools for sepsis diagnosis

    Identification of SARS-CoV-2-specific immune alterations in acutely ill patients

    Full text link
    Dysregulated immune profiles have been described in symptomatic patients infected with SARS-CoV-2. Whether the reported immune alterations are specific to SARS-CoV-2 infection or also triggered by other acute illnesses remains unclear. We performed flow cytometry analysis on fresh peripheral blood from a consecutive cohort of (a) patients hospitalized with acute SARS-CoV-2 infection, (b) patients of comparable age and sex hospitalized for another acute disease (SARS-CoV-2 negative), and (c) healthy controls. Using both data-driven and hypothesis-driven analyses, we found several dysregulations in immune cell subsets (e.g., decreased proportion of T cells) that were similarly associated with acute SARS-CoV-2 infection and non-COVID-19-related acute illnesses. In contrast, we identified specific differences in myeloid and lymphocyte subsets that were associated with SARS-CoV-2 status (e.g., elevated proportion of ICAM-1+ mature/activated neutrophils, ALCAM+ monocytes, and CD38+CD8+ T cells). A subset of SARS-CoV-2-specific immune alterations correlated with disease severity, disease outcome at 30 days, and mortality. Our data provide an understanding of the immune dysregulation specifically associated with SARS-CoV-2 infection among acute care hospitalized patients. Our study lays the foundation for the development of specific biomarkers to stratify SARS-CoV-2-positive patients at risk of unfavorable outcomes and to uncover candidate molecules to investigate from a therapeutic perspective

    A Bayesian reanalysis of the Standard versus Accelerated Initiation of Renal-Replacement Therapy in Acute Kidney Injury (STARRT-AKI) trial

    Full text link
    Background Timing of initiation of kidney-replacement therapy (KRT) in critically ill patients remains controversial. The Standard versus Accelerated Initiation of Renal-Replacement Therapy in Acute Kidney Injury (STARRT-AKI) trial compared two strategies of KRT initiation (accelerated versus standard) in critically ill patients with acute kidney injury and found neutral results for 90-day all-cause mortality. Probabilistic exploration of the trial endpoints may enable greater understanding of the trial findings. We aimed to perform a reanalysis using a Bayesian framework. Methods We performed a secondary analysis of all 2927 patients randomized in multi-national STARRT-AKI trial, performed at 168 centers in 15 countries. The primary endpoint, 90-day all-cause mortality, was evaluated using hierarchical Bayesian logistic regression. A spectrum of priors includes optimistic, neutral, and pessimistic priors, along with priors informed from earlier clinical trials. Secondary endpoints (KRT-free days and hospital-free days) were assessed using zero–one inflated beta regression. Results The posterior probability of benefit comparing an accelerated versus a standard KRT initiation strategy for the primary endpoint suggested no important difference, regardless of the prior used (absolute difference of 0.13% [95% credible interval [CrI] − 3.30%; 3.40%], − 0.39% [95% CrI − 3.46%; 3.00%], and 0.64% [95% CrI − 2.53%; 3.88%] for neutral, optimistic, and pessimistic priors, respectively). There was a very low probability that the effect size was equal or larger than a consensus-defined minimal clinically important difference. Patients allocated to the accelerated strategy had a lower number of KRT-free days (median absolute difference of − 3.55 days [95% CrI − 6.38; − 0.48]), with a probability that the accelerated strategy was associated with more KRT-free days of 0.008. Hospital-free days were similar between strategies, with the accelerated strategy having a median absolute difference of 0.48 more hospital-free days (95% CrI − 1.87; 2.72) compared with the standard strategy and the probability that the accelerated strategy had more hospital-free days was 0.66. Conclusions In a Bayesian reanalysis of the STARRT-AKI trial, we found very low probability that an accelerated strategy has clinically important benefits compared with the standard strategy. Patients receiving the accelerated strategy probably have fewer days alive and KRT-free. These findings do not support the adoption of an accelerated strategy of KRT initiation

    Initiation of continuous renal replacement therapy versus intermittent hemodialysis in critically ill patients with severe acute kidney injury: a secondary analysis of STARRT-AKI trial

    Full text link
    Background: There is controversy regarding the optimal renal-replacement therapy (RRT) modality for critically ill patients with acute kidney injury (AKI). Methods: We conducted a secondary analysis of the STandard versus Accelerated Renal Replacement Therapy in Acute Kidney Injury (STARRT-AKI) trial to compare outcomes among patients who initiated RRT with either continuous renal replacement therapy (CRRT) or intermittent hemodialysis (IHD). We generated a propensity score for the likelihood of receiving CRRT and used inverse probability of treatment with overlap-weighting to address baseline inter-group differences. The primary outcome was a composite of death or RRT dependence at 90-days after randomization. Results: We identified 1590 trial participants who initially received CRRT and 606 who initially received IHD. The composite outcome of death or RRT dependence at 90-days occurred in 823 (51.8%) patients who commenced CRRT and 329 (54.3%) patients who commenced IHD (unadjusted odds ratio (OR) 0.90; 95% confidence interval (CI) 0.75-1.09). After balancing baseline characteristics with overlap weighting, initial receipt of CRRT was associated with a lower risk of death or RRT dependence at 90-days compared with initial receipt of IHD (OR 0.81; 95% CI 0.66-0.99). This association was predominantly driven by a lower risk of RRT dependence at 90-days (OR 0.61; 95% CI 0.39-0.94). Conclusions: In critically ill patients with severe AKI, initiation of CRRT, as compared to IHD, was associated with a significant reduction in the composite outcome of death or RRT dependence at 90-days

    Regional Practice Variation and Outcomes in the Standard Versus Accelerated Initiation of Renal Replacement Therapy in Acute Kidney Injury (STARRT-AKI) Trial: A Post Hoc Secondary Analysis.

    Full text link
    ObjectivesAmong patients with severe acute kidney injury (AKI) admitted to the ICU in high-income countries, regional practice variations for fluid balance (FB) management, timing, and choice of renal replacement therapy (RRT) modality may be significant.DesignSecondary post hoc analysis of the STandard vs. Accelerated initiation of Renal Replacement Therapy in Acute Kidney Injury (STARRT-AKI) trial (ClinicalTrials.gov number NCT02568722).SettingOne hundred-fifty-three ICUs in 13 countries.PatientsAltogether 2693 critically ill patients with AKI, of whom 994 were North American, 1143 European, and 556 from Australia and New Zealand (ANZ).InterventionsNone.Measurements and main resultsTotal mean FB to a maximum of 14 days was +7199 mL in North America, +5641 mL in Europe, and +2211 mL in ANZ (p p p p p p p p = 0.007).ConclusionsAmong STARRT-AKI trial centers, significant regional practice variation exists regarding FB, timing of initiation of RRT, and initial use of continuous RRT. After adjustment, such practice variation was associated with lower ICU and hospital stay and 90-day mortality among ANZ patients compared with other regions
    corecore