404 research outputs found

    Gallium Substituted "114" YBaFe4O7: From a ferrimagnetic cluster glass to a cationic disordered spin glass

    Full text link
    The study of the ferrites YBaFe4-xGaxO7 shows that the substitution of Ga for Fe in YBaFe4O7 stabilizes the hexagonal symmetry for 0.40 < x < 0.70, at the expense of the cubic one. Using combined measurements of a. c. and d. c. magnetization, we establish that Ga substitution for Fe in YBaFe4O7 leads to an evolution from a geometrically frustrated spin glass (for x = 0) to a cationic disorder induced spin glass (x = 0.70). We also find an intermediate narrow range of doping where the samples are clearly phase separated having small ferrimagnetic clusters embedded in a spin glass matrix. The origin of the ferrimagnetic clusters lies in the change in symmetry of the samples from cubic to hexagonal (and a consequent lifting of the geometrical frustration) as a result of Ga doping. We also show the presence of exchange bias and domain wall pinning in these samples. The cause of both these effects can be traced back to the inherent phase separation present in the samples.Comment: 25 pages, 10 figure

    A Story of kpfonts: Reaching the Limits of NFSS

    Get PDF

    Experimental characterization and modelling of a cavitating centrifugal pump operating in fast start-up conditions

    Get PDF
    The start-up of rocket engine turbopumps is generally performed only in a few seconds. It implies that these pumps reach their nominal operating conditions after only a few rotations. During these first rotations of the blades, the flow evolution in the pump is governed by transient phenomena, based mainly on the flow rate and rotation speed evolution. These phenomena progressively become negligible when the steady behavior is reached. The pump transient behaviour induces significant pressure fluctuations which may result in partial flow vaporization, i.e. cavitation. An existing experimental test rig has been updated in the LML laboratory (Lille, France) for the start-ups of a centrifugal pump. The study focuses on cavitation induced during the pump start-up. Instantaneous measurement of torque, flow rate, inlet and outlet unsteady pressures, and pump rotation velocity enable to characterize the pump behaviour during rapid starting periods. Three different types of fast start-up behaviours have been identified and have been presented at ISROMAC 12 (Duplaa et al, 2008). According to the final operating point, the start-up is characterized either by a single drop of the delivery static pressure, by several low-frequency drops, or by a water hammer phenomenon that can be observed both a the inlet and outlet of the pump. A physical analysis to explain these three different types of transient flow behaviour has been recently proposed (Duplaa et al, 2010). In the present paper, a modelling of the fast start ups in cavitating conditions is proposed. It consists of a two steps adaptation of fast start-up model in non cavitating conditions proposed by Dazin et al (2007). For that, fast X-rays imaging has been performed in the impeller with the collaboration of the French Atomic Agency (CEA) in order to determinate the high frequency evolution of the volume fraction during fast the start-ups. Although the results of the modelling presented here are not definitive, they are very promising

    Experimental and Numerical Investigation of Unforced unsteadiness in a Vaneless Radial Diffuser

    Get PDF
    The paper reports combined experimental and numerical investigations of unforced un- steadiness in a vaneless radial diffuser. Experimental data were obtained within the diffuser using stereoscopic time resolved Particle Image Velocimetry (PIV) recording three velocity components in a plane (2D/3C), coupled with unsteady pressure transducers. To characterize the inception and the evolution of the unsteady phenomena, spectral analyses of the pressure signals were carried out both in frequency and time-frequency domains and the PIV results were post processed by an original averaging method. Two partial flow rates were investigated in detail in this paper. A single unforced unsteadiness was identified for the lowest flow rate, whereas, two competitive intermittent modes were recognized for the higher mass flow. Numerical analyses were carried out on the same pump by the commercial code CFX. All the computations were performed using the unsteady transient model and the turbulence was modelled by the Scale-Adaptive Simulation (SAS) model. Numerical pressure signals were compared with the experimental data to verify the development of the same pressure fluctua- tions

    Magnetic properties of the ferrimagnetic cobaltite CaBaCo4O7

    Full text link
    The magnetic properties of the ferrimagnetic cobaltite CaBaCo4_4O7_7 are systematically investigated. We find that the susceptibility exhibits a downward deviation below \sim 360 K, suggesting the occurrence of short range magnetic correlations at temperature well above TCT_C. The effective moment is determined to be 4.5 μB\mu_B/f.u, which is consistent with that expected for the Co2+^{2+}/Co3+^{3+} high spin species. Using a criterion given by Banerjee [Phys. Lett. \textbf{12}, 16 (1964)], we demonstrate that the paramagnetic to ferrimagnetic transition in CaBaCo4_4O7_7 has a first order character.Comment: 9 pages, 4 figures. To be published in Solid State Communication

    Spin-locking effect in the nanoscale ordered perovskite cobaltite LaBaCo2O6

    Full text link
    A new nanoscale ordered perovskite cobaltite, which consists of 90 degree ordered domains of the layered-112 LaBaCo2O6 has been evidenced by high resolution- transmission electron microscopy. This new form, like the disordered La0.5Ba0.5CoO3 and ordered LaBaCo2O6, exhibits a ferromagnetic transition at TC around 179 K. However, it differs from the two previous forms by its strong magnetic anisotropy, and correlatively by its high value of coercivity (0.42 Tesla) at low temperature. We suggest that this behaviour originates from the locking of magnetic spins in the 90 degree oriented nano-domain. Moreover, one observes a semi-metal/semi-metal transition at TC with a maximum magnetoresistance of 6.5 % at this temperature.Comment: 16 pages including figure

    Cavitation inception in fast startup

    Get PDF
    The start-up of rocket engine turbopumps is generally performed only in a few seconds. It implies that these pumps reach their nominal operating conditions after only a few rotations. During these first rotations of the blades, the flow evolution in the pump is governed by transient phenomena, based mainly on the flow rate and rotation speed evolution. These phenomena progressively become negligible when the steady behaviour is reached. The pump transient behaviour induces significant pressure fluctuations which may result in partial flow vaporization, i.e. cavitation. An existing experimental test rig has been updated in the LML laboratory (Lille, France) for the start-ups of a centrifugal pump. The study focuses on cavitation induced during the pump start-up. Instantaneous measurement of torque, mass flow rate, inlet and outlet unsteady pressures, and pump rotation velocity enable to characterize the pump behaviour during rapid starting periods

    Transport and magnetic properties in YBaCo2O5.45: Focus on the high-temperature transition

    Full text link
    The electronic transport properties and the magnetic susceptibility were measured in detail in YBaCo2O5.45YBaCo_2O_{5.45}. Close to the so-called metal-insulator transition, strong effects of resistance relaxation, a clear thermal hysteresis and a sudden increase of the resistance noise are observed. This is likely due to the first order character of the transition and to the underlying phases coexistence. Despite these out of equilibrium features, a positive and linear magneto-resistance is also observed, possibly linked to the heterogeneity of the state. From a magnetic point of view, the paramagnetic to ordered magnetic state transition is observed using non linear susceptibilty. This transition shows the characteristics of a continuous transition, and time dependent effects can be linked with the dynamics of magnetic domains in presence of disorder. Thus, when focusing on the order of the transitions, the electronic one and the magnetic one can not be directly associated.Comment: accepted for publication in PR
    corecore