6 research outputs found

    Effect of Contamination on Electric Field Distribution of DC Voltage Divider

    No full text
    In order to research the influence of the contamination around the external insulating surface of DC voltage divider with different types in the electic field distribution by using the finite element method, a two dimensional axisymmetric model of the DC voltage divider in Longquan convertor station is built. Through the calculation comparison in electrostatic and quasi-electrostatic field, the relative dielectric constant of the dry, moist and the non-uniform mixed contamination layer is discussed under the condition of the material parameters is known in quasi-electrostatic field .Analysis shows that for dry contamination,the field type has no influence on the electric field distribution when the parameters of the materials are same. While for moist contamination,the relative dielectric constant in electrostatic field should be set according to the material resistivity in quasi-electrostatic field and the actual condition. The calculation of the non-uniform contamination prove that the materials parameters in electrostatic filed is reasonable

    Detection of Transmission Line Insulator Defects Based on an Improved Lightweight YOLOv4 Model

    No full text
    Defective insulators seriously threaten the safe operation of transmission lines. This paper proposes an insulator defect detection method based on an improved YOLOv4 algorithm. An insulator image sample set was established according to the aerial images from the power grid and the public dataset on the Internet, combining with the image augmentation method based on GraphCut. The insulator images were preprocessed by Laplace sharpening method. To solve the problems of too many parameters and low detection speed of the YOLOv4 object detection model, the MobileNet lightweight convolutional neural network was used to improve YOLOv4 model structure. Combining with the transfer learning method, the insulator image samples were used to train, verify, and test the improved YOLOV4 model. The detection results of transmission line insulator and defect images show that the detection accuracy and speed of the proposed model can reach 93.81% and 53 frames per second (FPS), respectively, and the detection accuracy can be further improved to 97.26% after image preprocessing. The overall performance of the proposed lightweight YOLOv4 model is better than traditional object detection algorithms. This study provides a reference for intelligent inspection and defect detection of suspension insulators on transmission lines

    A GIS Partial Discharge Defect Identification Method Based on YOLOv5

    No full text
    The correct identification of partial discharge types is of great significance to the stable operation of GIS. In order to improve the recognition accuracy and result of partial discharge, and to meet the requirements of real-time monitoring of GIS equipment, this paper proposes a GIS partial discharge defect recognition model based on YOLOv5. First, the GIS partial discharge simulation experiment is established to create the dataset of partial discharge PRPD map. Then, a YOLOv5-based GIS partial discharge defect recognition model is constructed, and different training methods are used to optimize the parameters of the model. By comparing with target detection models based on other deep learning methods, such as Faster-RCNN and YOLOv4, the YOLOv5 model discussed in the paper has significantly improved the recognition efficiency and recognition accuracy, in which mAP value is 95.89% and FPS is 28.89. In addition, the model can realize the distinction and identification of multiple PD types in a single PRPD map. At last, the YOLOv5-based GIS partial discharge defect identification model is applied to the test in a 500 kV substation. The model accurately determines the type of GIS partial discharge, which verifies the accuracy and validity of the model

    A GIS Partial Discharge Defect Identification Method Based on YOLOv5

    No full text
    The correct identification of partial discharge types is of great significance to the stable operation of GIS. In order to improve the recognition accuracy and result of partial discharge, and to meet the requirements of real-time monitoring of GIS equipment, this paper proposes a GIS partial discharge defect recognition model based on YOLOv5. First, the GIS partial discharge simulation experiment is established to create the dataset of partial discharge PRPD map. Then, a YOLOv5-based GIS partial discharge defect recognition model is constructed, and different training methods are used to optimize the parameters of the model. By comparing with target detection models based on other deep learning methods, such as Faster-RCNN and YOLOv4, the YOLOv5 model discussed in the paper has significantly improved the recognition efficiency and recognition accuracy, in which mAP value is 95.89% and FPS is 28.89. In addition, the model can realize the distinction and identification of multiple PD types in a single PRPD map. At last, the YOLOv5-based GIS partial discharge defect identification model is applied to the test in a 500 kV substation. The model accurately determines the type of GIS partial discharge, which verifies the accuracy and validity of the model
    corecore