6 research outputs found

    Metabolomics Analysis Reveals the Effects of Compound Fuzhuan Brick Tea (CFBT) on Regulating Dyslipidemia and Metabolic Disorders in Mice Induced by High-Fat Diet

    No full text
    Background: It is well known that obesity induced by high-fat diet (HFD) poses a serious threat to people’s health. Fuzhuan brick tea, one of the most popular beverages, is reported to possess a significant effect on regulating lipid metabolism, attributed to its many bioactive ingredients. However, the efficacy and mechanism of compound Fuzhuan brick tea (CFBT) made from Fuzhuan brick tea and other six Chinese herbal medicines are still not well defined. Methods: Sixty mice were divided into six groups: normal control group (CK), high-fat model group (NK), positive control group with anti-hyperlipidemic drug (YK), CFBT at low-(FL), medium-(FM) and high-(FH) dosage. Intervening for 30 days, conventional indexes analysis combined with metabolomics were performed to evaluate the changes in biochemical indexes and liver metabolic profiles in mice submitted to HFD. Results: CFBT treatment was able to ameliorate obesity, serum biochemical parameters, antioxidant activity and hepatic steatosis. In addition, significant alterations in the liver tissue metabolic profiles were observed, with most of these associated with inflammation, glucose and lipid metabolism. Conclusions: This study provides evidence that consumption of CFBT is capable of preventing dyslipidemia, reducing weight gain, restoring liver injury, as well as improving metabolic disorders

    Effect of Duyun Compound Green Tea on Gut Microbiota Diversity in High-Fat-Diet-Induced Mice Revealed by Illumina High-Throughput Sequencing

    No full text
    Intake of a high-fat diet (HFD) is closely related to disorders of the intestinal microbiota, which plays a key role in the pathogenesis of obesity. Duyun compound green tea, an ancient Chinese drink, is widely consumed to reduce weight, although the mechanism is not clear. In this study, 50 mice were randomly divided into 5 groups: normal control group (CK), HFD model control group (NK), positive control group with medicine (YK), low-dose compound tea group (DL), and high-dose compound tea group (DH). After 4 weeks of intervention, the feces of mice were taken under sterile conditions and evaluated using Illumina high-throughput sequencing technology. The results showed that the diversity of intestinal microbiota was the highest in the CK group, the lowest in the NK group, and relatively increased in the compound tea treatment group. Second, there were differences in intestinal microbiota in each group, among which the beneficial bacteria in the intestinal tract of the CK group were higher than those in the other groups, while the beneficial bacteria in each compound tea treatment group were more abundant than those in the NK group, in which harmful bacteria in the intestinal tract were found to be the highest. These results suggest that compounds in tea may be able to attenuate imbalances of intestinal microbiota induced by poor diet, acting as a therapeutic agent in obesity or other diseases associated with gut dysbiosis

    Comprehensive analysis of putative dihydroflavonol 4-reductase gene family in tea plant.

    No full text
    One identified dihydroflavonol 4-reductases (DFR) encoding gene (named as CsDFRa herein) and five putative DFRs (named as CsDFRb1, CsDFRb2, CsDFRb3, CsDFRc and CsDFRd) in tea (Camellia sinensis) have been widely discussed in recent papers concerning multi-omics data. However, except for CsDFRa, their function and biochemical characteristics are not clear. This study aims to compare all putative CsDFRs and preliminarily evaluate their function. We investigated the sequences of genes (coding and promoter regions) and predicted structures of proteins encoded, and determined the activities of heterologously expressed CsDFRs under various conditions. The results showed that the sequences of five putative CsDFRs were quite different from CsDFRa, and had lower expression levels as well. The five putative CsDFRs could not catalyze three dihydroflavonol substrates. The functional CsDFRa had the strongest affinity with dihydroquercetin, and performed best at pH around 7 and 35°C but was not stable at lower pHs or higher temperatures. Single amino acid mutation at position 141 modified the preference of CsDFRa for dihydroquercetin and dihydromyricetin, and also weakened its stability. These data suggest that only CsDFRa works in the pathway for generating anthocyanidins and catechins. This study provides new insights into the function of CsDFRs and may assist to develop new strategies to manipulate the composition of tea flavonoids in the future

    Chloroplast genome structure and phylogenetic position of Lophatherum gracile

    No full text
    Lophatherum gracile is distributed in south China, Japan and South Asia, and it is wild in the valley, stream, woodland, forest edge and gully edge. In this study, the complete chloroplast genome sequence of Lophatherum gracile was successfully obtained using Illumina sequencing. The full length of the chloroplast genome length was 137,749 bp with a typical quadripartite structure: one large single copy (LSC) region (80,610 bp), one small single copy (SSC) region (12,429 bp), and a pair of inverted repeats (IRs) (22,355 bp each). The GC content of this genome was 38.64%. The whole genome contained 130 genes, including 85 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. Phylogenetic analysis indicated that Lophatherum gracile was closely related to Cenchrus americanus and Cenchrus longispinus

    Metabolome and Transcriptome Analysis Reveals Putative Genes Involved in Anthocyanin Accumulation and Coloration in White and Pink Tea (Camellia sinensis) Flower

    No full text
    A variant of tea tree (Camellia sinensis (L.)) with purple buds and leaves and pink flowers can be used as a unique ornamental plant. However, the mechanism of flower coloration remains unclear. To elucidate the molecular mechanism of coloration, as well as anthocyanin accumulation in white and pink tea flowers, metabolite profiling and transcriptome sequencing was analyzed in various tea flower developmental stages. Results of metabolomics analysis revealed that three specific anthocyanin substances could be identified, i.e., cyanidin O-syringic acid, petunidin 3-O-glucoside, and pelargonidin 3-O-β-d-glucoside, which only accumulated in pink tea flowers, and were not able to be detected in white flowers. RNA-seq and weighted gene co-expression network analysis revealed eight highly expressed structural genes involved in anthocyanin biosynthetic pathway, and particularly, different expression patterns of flavonol synthase and dihydroflavonol-4-reductase genes were observed. We deduced that the disequilibrium of expression levels in flavonol synthases and dihydroflavonol-4-reductases resulted in different levels of anthocyanin accumulation and coloration in white and pink tea flowers. Results of qRT-PCR performed for 9 key genes suggested that the expression profiles of differentially expressed genes were generally consistent with the results of high-throughput sequencing. These findings provide insight into anthocyanin accumulation and coloration mechanisms during tea flower development, which will contribute to the breeding of pink-flowered and anthocyanin-rich tea cultivars
    corecore