54 research outputs found
Evaluation of changes in T-wave alternans induced by 60-days of immobilization by head-down bed-rest
A Novel Approach Based on Spatio-temporal Features and Random Forest for Scar Detection Using Cine Cardiac Magnetic Resonance Images
Aim. To identify the presence of scar tissue in the left ventricle from Gadolinium (Gd)-free magnetic resonance cine sequences using a learning-based approach relying on spatio-temporal features. Methods. The spatial and temporal features were extracted using local binary patterns from (i) cine end-diastolic frame and (ii) two parametric images of amplitude and phase wall motion, respectively, and classified with Random Forest. Results. When tested on 328 cine sequences from 40 patients, a recall of 70% was achieved, improving significantly the classification resulting from spatial and temporal features processed separately. Conclusions. The proposed approach showed promising results, paving the way for scar identification from Gd-free images
Artificial intelligence in medical device software and high-risk medical devices–a review of definitions, expert recommendations and regulatory initiatives
Introduction: Artificial intelligence (AI) encompasses a wide range of algorithms with risks when used to support decisions about diagnosis or treatment, so professional and regulatory bodies are recommending how they should be managed. / Areas covered: AI systems may qualify as standalone medical device software (MDSW) or be embedded within a medical device. Within the European Union (EU) AI software must undergo a conformity assessment procedure to be approved as a medical device. The draft EU Regulation on AI proposes rules that will apply across industry sectors, while for devices the Medical Device Regulation also applies. In the CORE-MD project (Coordinating Research and Evidence for Medical Devices), we have surveyed definitions and summarize initiatives made by professional consensus groups, regulators, and standardization bodies. / Expert opinion: The level of clinical evidence required should be determined according to each application and to legal and methodological factors that contribute to risk, including accountability, transparency, and interpretability. EU guidance for MDSW based on international recommendations does not yet describe the clinical evidence needed for medical AI software. Regulators, notified bodies, manufacturers, clinicians and patients would all benefit from common standards for the clinical evaluation of high-risk AI applications and transparency of their evidence and performance
Assessment of left ventricular volumes using simplified 3-D echocardiography and computed tomography – a phantom and clinical study
<p>Abstract</p> <p>Objectives</p> <p>To compare the accuracy of simplified 3-dimensional (3-D) echocardiography vs. multi-slice computed tomography (MSCT) software for the quantification of left ventricular (LV) volumes.</p> <p>Design</p> <p>Three-D echocardiography (3-planes approach) and MSCT-CardIQ software were calibrated by measuring known volumes of 10 phantoms designed to closely mimic blood-endocardium interface. Subsequently, LV volumes were measured with both the methods in 9 patients referred routinely for coronary angiography and the agreement between the measurements was evaluated.</p> <p>Results</p> <p>Simplified 3D-echocardiography provided higher degree of agreement between the measured and true phantom volumes (mean difference 0 ± 1 ml, variation range +4 to -4 ml) than MSCT software (mean difference 6 ± 5 ml; variation range +22 to -10 ml). The agreement between LV measurements in the patients was considerably poorer, with significantly larger volumes produced by MSCT (mean difference -23 ± 40 ml, variation between +93 and -138 ml).</p> <p>Conclusion</p> <p>Simplified 3-D echocardiography provides more accurate assessment of phantom volumes than MSCT-CardIQ software. The discrepancy between the results of LV measurements with the two methods is even greater and does not warrant their interchangeable diagnostic use.</p
Flow-volume loops derived from three-dimensional echocardiography: a novel approach to the assessment of left ventricular hemodynamics
BACKGROUND: This study explores the feasibility of non-invasive evaluation of left ventricular (LV) flow-volume dynamics using 3-dimensional (3D) echocardiography, and the capacity of such an approach to identify altered LV hemodynamic states caused by valvular abnormalities. METHODS: Thirty-one patients with moderate-severe aortic (AS) and mitral (MS) stenoses (21 and 10 patients, respectively) and 10 healthy volunteers underwent 3D echocardiography with full volume acquisition using Philips Sonos 7500 equipment. The digital 3D data were post- processed using TomTec software. LV flow-volume loops were subsequently constructed for each subject by plotting instantaneous LV volume data sampled throughout the cardiac cycle vs. their first derivative representing LV flow. After correction for body surface area, an average flow-volume loop was calculated for each subject group. RESULTS: Flow-volume loops were obtainable in all subjects, except 3 patients with AS. The flow-volume diagrams displayed clear differences in the form and position of the loops between normal individuals and the respective patient groups. In patients with AS, an "obstructive" pattern was observed, with lower flow values during early systole and larger end-systolic volume. On the other hand, patients with MS displayed a "restrictive" flow-volume pattern, with reduced diastolic filling and smaller end-diastolic volume. CONCLUSION: Non-invasive evaluation of LV flow-volume dynamics using 3D-echocardiographic data is technically possible and the approach has a capacity to identify certain specific types of alteration of LV flow-volume pattern caused by valvular abnormalities, thus reflecting underlying hemodynamic states specific for these abnormalities
Comparison of contrast enhanced three dimensional echocardiography with MIBI gated SPECT for the evaluation of left ventricular function
Background. In clinical practice and in clinical trials, echocardiography and scintigraphy are used the most for the evaluation of global left ejection fraction (LVEF) and left ventricular (LV) volumes. Actually, poor quality imaging and geometrical assumptions are the main limitations of LVEF measured by echocardiography. Contrast agents and 3D echocardiography are new methods that may alleviate these potential limitations. Methods. Therefore we sought to examine the accuracy of contrast 3D echocardiography for the evaluation of LV volumes and LVEF relative to MIBI gated SPECT as an independent reference. In 43 patients addressed for chest pain, contrast 3D echocardiography (RT3DE) and MIBI gated SPECT were prospectively performed on the same day. The accuracy and the variability of LV volumes and LVEF measurements were evaluated. Results. Due to good endocardial delineation, LV volumes and LVEF measurements by contrast RT3DE were feasible in 99% of the patients. The mean LV end-diastolic volume (LVEDV) of the group by scintigraphy was 143 65 mL and was underestimated by triplane contrast RT3DE (128 60 mL; p < 0.001) and less by full-volume contrast RT3DE (132 62 mL; p < 0.001). Limits of agreement with scintigraphy were similar for triplane andfull-volume, modalities with the best results for full-volume. Results were similar for calculation of LV end-systolic volume (LVESV). The mean LVEF was 44 16% with scintigraphy and was not significantly different with both triplane contrast RT3DE (45 15%) and full-volume contrast RT3DE (45 15%). There was an excellent correlation between two different observers for LVEDV, LVESV and LVEF measurements and inter observer agreement was also good for both contrast RT3DE techniques. Conclusion. Contrast RT3DE allows an accurate assessment of LVEF compared to the LVEF measured by SPECT, and shows low variability between observers. Although RT3DE triplane provides accurate evaluation of left ventricular function, RT3DE full-volume is superior to triplane modality in patients with suspected coronary artery disease. © 2009 Cosyns et al; licensee BioMed Central Ltd.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
Reverse left ventricular remodeling is more likely in non ischemic cardiomyopathy patients upgraded to biventricular stimulation after chronic right ventricular pacing
<p>Abstract</p> <p>Background</p> <p>Chronic right ventricular (RV) apical pacing may lead to left ventricular (LV) dyssynchrony and LV dysfunction. In heart failure due to RV pacing, upgrading to biventricular stimulation (CRT) can improve NYHA Class and LV function. A proportion of patients do not respond to upgrading. Aim was to assess whether etiology of LV dysfunction accounts for responses to CRT in RV-paced patients.</p> <p>Methods</p> <p>Sixty-two patients treated by CRT, under RV pacing from 50.2 ± 5.4 months, were studied. Cause of LV dysfunction was non-ischemic (NIC) in 28 and ischemic cardiomyopathy (IC) in 34 patients. Clinical and conventional echocardiographic parameters were available within 1 month before RV pacing, within 1 month before CRT and at 12 ± 2 months of follow-up (FU).</p> <p>Results</p> <p>Decreased LVEF (from 37.0 ± 8.8 to 25.6 ± 6.1%, p <0.001), increased LV end-systolic dimensions (LVESD) (from 48.1 ± 8.6 to 55.2 ± 7.9 mm, p <0.001) and worsened NYHA Class (from 1.9 ± 1.1 to 3.2 ± .6, p < 0.005) were found before CRT, compared to pre RV-pacing. After CRT, 44/62 patients showed a ≥ 1 NYHA Class improvement; >10% decrease in LVESD was observed in 24 patients: 5 with IC, 19 with NIC (p < .0.001). The association between cause of LV dysfunction with >10% decrease in LVESD remained highly significant (p < 0.001) adjusting for pre-CRT QRS duration, NYHA Class, LVEF, LVESD, treatment or RV pacing duration.</p> <p>Conclusions</p> <p>CRT improves functional class even after long-lasting pacing. Reverse remodeling is evident in a small population, more likely with NIC.</p
Three-dimensional echocardiography for left ventricular quantification: fundamental validation and clinical applications
One of the earliest applications of clinical echocardiography is evaluation of left ventricular (LV) function and size. Accurate, reproducible and quantitative evaluation of LV function and size is vital for diagnosis, treatment and prediction of prognosis of heart disease. Early three-dimensional (3D) echocardiographic techniques showed better reproducibility than two-dimensional (2D) echocardiography and narrower limits of agreement for assessment of LV function and size in comparison to reference methods, mostly cardiac magnetic resonance (CMR) imaging, but acquisition methods were cumbersome and a lack of user-friendly analysis software initially precluded widespread use. Through the advent of matrix transducers enabling real-time three-dimensional echocardiography (3DE) and improvements in analysis software featuring semi-automated volumetric analysis, 3D echocardiography evolved into a simple and fast imaging modality for everyday clinical use. 3DE provides the possibility to evaluate the entire LV in three spatial dimensions during the complete cardiac cycle, offering a more accurate and complete quantitative evaluation the LV. Improved efficiency in acquisition and analysis may provide clinicians with important diagnostic information within minutes. The current article reviews the methodology and application of 3DE for quantitative evaluation of the LV, provides the scientific evidence for its current clinical use, and discusses its current limitations and potential future directions
Recommended from our members
Standardized assessment of evidence supporting the adoption of mobile health solutions: A Clinical Consensus Statement of the ESC Regulatory Affairs Committee
Mobile health (mHealth) solutions have the potential to improve self-management and clinical care. For successful integration into routine clinical practice, healthcare professionals (HCPs) need accepted criteria helping the mHealth solutions’ selection, while patients require transparency to trust their use. Information about their evidence, safety and security may be hard to obtain and consensus is lacking on the level of required evidence. The new Medical Device Regulation is more stringent than its predecessor, yet its scope does not span all intended uses and several difficulties remain. The European Society of Cardiology Regulatory Affairs Committee set up a Task Force to explore existing assessment frameworks and clinical and cost-effectiveness evidence. This knowledge was used to propose criteria with which HCPs could evaluate mHealth solutions spanning diagnostic support, therapeutics, remote follow-up and education, specifically for cardiac rhythm management, heart failure and preventive cardiology. While curated national libraries of health apps may be helpful, their requirements and rigour in initial and follow-up assessments may vary significantly. The recently developed CEN-ISO/TS 82304-2 health app quality assessment framework has the potential to address this issue and to become a widely used and efficient tool to help drive decision-making internationally. The Task Force would like to stress the importance of co-development of solutions with relevant stakeholders, and maintenance of health information in apps to ensure these remain evidence-based and consistent with best practice. Several general and domain-specific criteria are advised to assist HCPs in their assessment of clinical evidence to provide informed advice to patients about mHealth utilization
Current cardiac imaging techniques for detection of left ventricular mass
Estimation of left ventricular (LV) mass has both prognostic and therapeutic value independent of traditional risk factors. Unfortunately, LV mass evaluation has been underestimated in clinical practice. Assessment of LV mass can be performed by a number of imaging modalities. Despite inherent limitations, conventional echocardiography has fundamentally been established as most widely used diagnostic tool. 3-dimensional echocardiography (3DE) is now feasible, fast and accurate for LV mass evaluation. 3DE is also superior to conventional echocardiography in terms of LV mass assessment, especially in patients with abnormal LV geometry. Cardiovascular magnetic resonance (CMR) and cardiovascular computed tomography (CCT) are currently performed for LV mass assessment and also do not depend on cardiac geometry and display 3-dimensional data, as well. Therefore, CMR is being increasingly employed and is at the present standard of reference in the clinical setting. Although each method demonstrates advantages over another, there are also disadvantages to receive attention. Diagnostic accuracy of methods will also be increased with the introduction of more advanced systems. It is also likely that in the coming years new and more accurate diagnostic tests will become available. In particular, CMR and CCT have been intersecting hot topic between cardiology and radiology clinics. Thus, good communication and collaboration between two specialties is required for selection of an appropriate test
- …