10,214 research outputs found

    GNSS troposphere tomography based on two-step reconstructions using GPS observations and COSMIC profiles

    Get PDF
    Traditionally, balloon-based radiosonde soundings are used to study the spatial distribution of atmospheric water vapour. However, this approach cannot be frequently employed due to its high cost. In contrast, GPS tomography technique can obtain water vapour in a high temporal resolution. In the tomography technique, an iterative or non-iterative reconstruction algorithm is usually utilised to overcome rank deficiency of observation equations for water vapour inversion. However, the single iterative or non-iterative reconstruction algorithm has their limitations. For instance, the iterative reconstruction algorithm requires accurate initial values of water vapour while the non-iterative reconstruction algorithm needs proper constraint conditions. To overcome these drawbacks, we present a combined iterative and non-iterative reconstruction approach for the three-dimensional (3-D) water vapour inversion using GPS observations and COSMIC profiles. In this approach, the non-iterative reconstruction algorithm is first used to estimate water vapour density based on a priori water vapour information derived from COSMIC radio occultation data. The estimates are then employed as initial values in the iterative reconstruction algorithm. The largest advantage of this approach is that precise initial values of water vapour density that are essential in the iterative reconstruction algorithm can be obtained. This combined reconstruction algorithm (CRA) is evaluated using 10-day GPS observations in Hong Kong and COSMIC profiles. The test results indicate that the water vapor accuracy from CRA is 16 and 14% higher than that of iterative and non-iterative reconstruction approaches, respectively. In addition, the tomography results obtained from the CRA are further validated using radiosonde data. Results indicate that water vapour densities derived from the CRA agree with radiosonde results very well at altitudes above 2.5 km. The average RMS value of their differences above 2.5 km is 0.44 g m<sup>−3</sup>

    Two-Sample Covariance Matrix Testing and Support Recovery

    Get PDF
    This paper proposes a new test for testing the equality of two covariance matrices Σ1 and Σ2 in the high-dimensional setting and investigates its theoretical and numerical properties. The limiting null distribution of the test statistic is derived. The test is shown to enjoy certain optimality and to be especially powerful against sparse alternatives. The simulation results show that the test significantly outperforms the existing methods both in terms of size and power. Analysis of prostate cancer datasets is carried out to demonstrate the application of the testing procedures. When the null hypothesis of equal covariance matrices is rejected, it is often of significant interest to further investigate in which way they differ. Motivated by applications in genomics, we also consider two related problems, recovering the support of Σ1 − Σ2 and testing the equality of the two covariance matrices row by row. New testing procedures are introduced and their properties are studied. Applications to gene selection is also discussed

    Cold Dark Matter Isocurvature Perturbations: Cosmological Constraints and Applications

    Full text link
    In this paper we present the constraints on cold dark matter (CDM) isocurvature contributions to the cosmological perturbations. By employing Markov Chain Monte Carlo method (MCMC), we perform a global analysis for cosmological parameters using the latest astronomical data, such as 7-year Wilkinson Microwave Anisotropy Probe (WMAP7) observations, matter power spectrum from the Sloan Digital Sky Survey (SDSS) luminous red galaxies (LRG), and "Union2" type Ia Supernovae (SNIa) sample. We find that the correlated mixture of adiabatic and isocurvature modes are mildly better fitting to the current data than the pure adiabatic ones, with the minimal χ2\chi^2 given by the likelihood analysis being reduced by 3.5. We also obtain a tight limit on the fraction of the CDM isocurvature contributions, which should be less than 14.6% at 95% confidence level. With the presence of the isocurvature modes, the adiabatic spectral index becomes slightly bigger, n_s^{\rm adi}=0.972\pm0.014~(1\,\sigma), and the tilt for isocurvature spectrum could be large, namely, the best fit value is n_s^{\rm iso}=3.020. Finally, we discuss the effect on WMAP normalization priors, shift parameter R, acoustic scale l_A and z_{*}, from the CDM isocurvaure perturbation. By fitting the mixed initial condition to the combined data, we find the mean values of R, l_A and z_{*} can be changed about 2.9\sigma, 2.8\sigma and 1.5\sigma respectively, comparing with those obtained in the pure adiabatic condition.Comment: 9 pages, 5 figures, 3 tables, references adde

    Cardiac Response to Chronic Intermittent Hypoxia with a Transition from Adaptation to Maladaptation: The Role of Hydrogen Peroxide

    Get PDF
    Obstructive sleep apnea (OSA) is a highly prevalent respiratory disorder of sleep, and associated with chronic intermittent hypoxia (CIH). Experimental evidence indicates that CIH is a unique physiological state with potentially “adaptive” and “maladaptive” consequences for cardio-respiratory homeostasis. CIH is also a critical element accounting for most of cardiovascular complications of OSA. Cardiac response to CIH is time-dependent, showing a transition from cardiac compensative (such as hypertrophy) to decompensating changes (such as failure). CIH-provoked mild and transient oxidative stress can induce adaptation, but severe and persistent oxidative stress may provoke maladaptation. Hydrogen peroxide as one of major reactive oxygen species plays an important role in the transition of adaptive to maladaptive response to OSA-associated CIH. This may account for the fact that although oxidative stress has been recognized as a driver of cardiac disease progression, clinical interventions with antioxidants have had little or no impact on heart disease and progression. Here we focus on the role of hydrogen peroxide in CIH and OSA, trying to outline the potential of antioxidative therapy in preventing CIH-induced cardiac damage

    Bis[2-(2-fur­yl)-1-(2-furylmeth­yl)-1H-benzimidazole-κN 3]diiodidocadmium

    Get PDF
    In the title complex, [CdI2(C16H12N2O2)2], the CdII atom is located on a twofold rotation axis and is four-coordinated by two N atoms from symmetry-related 2-(2-fur­yl)-1-(2-furyl­meth­yl)-1H-benzimidazole ligands and two I atoms in a distorted tetra­hedral configuration. The benzimidazole rings in adjacent mol­ecules are parallel, with an average inter­planar distance of 3.486 Å. The I atom is disordered over two sites in a 0.85 (5):0.15 (5) ratio
    corecore