20 research outputs found

    Effect of exogenous nitric oxide on sperm motility in vitro

    Full text link
    BACKGROUND: Nitric oxide (NO) has been shown to be important in sperm function, and the concentration of NO appears to determine these effects. Studies have demonstrated both positive and negative effects of NO on sperm function, but have not been able to provide a clear link between NO concentration and the extent of exposure to NO. To study the relationship between nitric oxide and sperm capacitationin vitro, and to provide a theoretical basis for the use of NO-related preparations in improving sperm motility for in vitro fertilization, we investigated the effects of NO concentration and time duration at these concentrations on in vitro sperm capacitation in both normal and abnormal sperm groups. We manipulated NO concentrations and the time duration of these concentrations using sodium nitroprusside (an NO donor) and NG-monomethyl-L-argenine (an NO synthase inhibitor). RESULTS: Compared to the normal sperm group, the abnormal sperm group had a longer basal time to reach the appropriate concentration of NO (p < 0.001), and the duration of time at this concentration was longer for the abnormal sperm group (p < 0.001). Both the basal time and the duration of time were significantly correlated with sperm viability and percentage of progressive sperm (p < 0.001). The experimental group had a significantly higher percentage of progressive sperm than the control group (p < 0.001). CONCLUSIONS: We hypothesize that there is a certain regularity to both NO concentration and its duration of time in regards to sperm capacitation, and that an adequate duration of time at the appropriate NO concentration is beneficial to sperm motility

    The effect of nitric oxide on the pressure of the acutely obstructed ureter

    Get PDF
    Acute ureteral obstruction leads to changes in pressure inside the ureter, interrupting ureter function. The aim of our study is to explore the relationship between nitric oxide (NO) concentration and pressure in the ureter and to observe the effects of nitric oxide on the revival of renal function. We created the animal models by embedding balloons in the lower ureters of anesthetized dogs and expanding them to simulate acute ureteral obstruction. First, the test animals were pre-treated intravenously with different doses of L-NAME (non-selective nitric oxide synthase inhibitor) to inhibit nitric oxide synthase (NOS), and 10 min later, each subject was administered an intravenous dose of isoproterenol (10 μg/kg). We measured ureter pressure (UP), total and peak concentrations of NO (using an NO monitor, model inNO-T) in ureteral urine, and the volume of the urine (UFV) leaking from the balloon edge. After a certain amount of time had elapsed, it became clear that the dose of L-NAME was inversely related to the total and peak concentrations of NO, the rate of change in UP, and the volume of urine produced. We conclude that L-NAME prevents the NOS from inhibiting the release of NO, then inhibits the effect of isoproterenol reducing the pressure of the acute obstructive ureter. Inversely, we think that NO can reduce the pressure of the acute obstructive ureter and make the obstructive ureter recanalization. And when more the concentration of nitric oxide, the more the pressure will be reduced, and more urine will be collected

    Identification, Classification, and Expression Analysis of GRAS Gene Family in Malus domestica

    No full text
    GRAS genes encode plant-specific transcription factors that play important roles in plant growth and development. However, little is known about the GRAS gene family in apple. In this study, 127 GRAS genes were identified in the apple (Malus domestica Borkh.) genome and named MdGRAS1 to MdGRAS127 according to their chromosomal locations. The chemical characteristics, gene structures and evolutionary relationships of the MdGRAS genes were investigated. The 127 MdGRAS genes could be grouped into eight subfamilies based on their structural features and phylogenetic relationships. Further analysis of gene structures, segmental and tandem duplication, gene phylogeny and tissue-specific expression with ArrayExpress database indicated their diversification in quantity, structure and function. We further examined the expression pattern of MdGRAS genes during apple flower induction with transcriptome sequencing. Eight higher MdGRAS (MdGRAS6, 26, 28, 44, 53, 64, 107, and 122) genes were surfaced. Further quantitative reverse transcription PCR indicated that the candidate eight genes showed distinct expression patterns among different tissues (leaves, stems, flowers, buds, and fruits). The transcription levels of eight genes were also investigated with various flowering related treatments (GA3, 6-BA, and sucrose) and different flowering varieties (Yanfu No. 6 and Nagafu No. 2). They all were affected by flowering-related circumstance and showed different expression level. Changes in response to these hormone or sugar related treatments indicated their potential involvement during apple flower induction. Taken together, our results provide rich resources for studying GRAS genes and their potential clues in genetic improvement of apple flowering, which enriches biological theories of GRAS genes in apple and their involvement in flower induction of fruit trees

    Brassinosteroid signaling regulates female germline specification in Arabidopsis

    No full text
    Unlike in humans and animals, plant germlines are specified de novo from somatic cells in the reproductive organs of the flower. In most flowering plant ovules, the female germline starts with the differentiation of one megaspore mother cell (MMC), which initiates a developmental program distinct from adjoining cells. Phytohormones act as a key player in physiological processes during plant development, in particular by providing positional information that supports localized differentiation events. However, little is known about the role of phytohormones for female germline initiation and establishment. Using Arabidopsis as a flowering plant model, we show that brassinosteroid (BR) biosynthesis and signaling components are accumulated in sporophytic cells of ovule primordia but not in the megaspore mother cell representing the precursor of the female germline. We further demonstrate that BR signaling restricts multiple sub-epidermal cells in the distal nucellus region of ovule primordia from acquiring MMC-like cell identity by transiently activating the WRKY23 transcription factor, expressed exclusively in L2 layer cells adjacent to the MMC. This activation is regulated through the BRI1 receptor and directly by the BZR1 transcriptional repressor family. Mutations in BR biosynthesis or signaling components and ectopic activation of BR signaling in MMCs induce multiple MMC-like cells. In summary, our findings elucidate a gene regulatory network that shows how the hormone BR generated in sporophytic ovule primordia cells restricts the origin of the female germline to a single cell

    Comprehensive analysis of GASA family members in the Malus domestica genome: identification, characterization, and their expressions in response to apple flower induction

    No full text
    Abstract Background The plant-specific gibberellic acid stimulated Arabidopsis (GASA) gene family is critical for plant development. However, little is known about these genes, particularly in fruit tree species. Results We identified 15 putative Arabidopsis thaliana GASA (AtGASA) and 26 apple GASA (MdGASA) genes. The identified genes were then characterized (e.g., chromosomal location, structure, and evolutionary relationships). All of the identified A. thaliana and apple GASA proteins included a conserved GASA domain and exhibited similar characteristics. Specifically, the MdGASA expression levels in various tissues and organs were analyzed based on an online gene expression profile and by qRT-PCR. These genes were more highly expressed in the leaves, buds, and fruits compared with the seeds, roots, and seedlings. MdGASA genes were also responsive to gibberellic acid (GA3) and abscisic acid treatments. Additionally, transcriptome sequencing results revealed seven potential flowering-related MdGASA genes. We analyzed the expression levels of these genes in response to flowering-related treatments (GA3, 6-benzylaminopurine, and sugar) and in apple varieties that differed in terms of flowering (‘Nagafu No. 2’ and ‘Yanfu No. 6’) during the flower induction period. These candidate MdGASA genes exhibited diverse expression patterns. The expression levels of six MdGASA genes were inhibited by GA3, while the expression of one gene was up-regulated. Additionally, there were expression-level differences induced by the 6-benzylaminopurine and sugar treatments during the flower induction stage, as well as in the different flowering varieties. Conclusion This study represents the first comprehensive investigation of the A. thaliana and apple GASA gene families. Our data may provide useful clues for future studies and may support the hypotheses regarding the role of GASA proteins during the flower induction stage in fruit tree species

    Identification and characterization of histone modification gene family reveal their critical responses to flower induction in apple

    No full text
    Abstract Background Histone methylation and acetylation regulate biological processes in plants through various histone modifications (HMs) gene families. However, knowledge of HMs genes is limited in horticultural deciduous trees, including apple (Malus domestica). Results Here, a comprehensive study of identifying and investigating HMs genes was performed using the recently published apple genome. In total, 198 MdHMs were identified, including 71 histone methyltransferases, 44 histone demethylases, 57 histone acetylases, and 26 histone deacetylases. Detailed analysis of the MdHMs, including chromosomes locations, gene structures, protein motif and protein-protein interactions were performed, and their orthologous genes were also predicted against nine plant species. Meanwhile, a syntenic analysis revealed that tandem, segmental, and whole genome duplications were involved in the evolution and expansion of the MdHMs gene family. Most MdHMs underwent purifying selection. The expression profiles of 198 MdHMs were investigated in response to 6-BA treatment and different flowering varieties (easy-flowering ‘Yanfu No.6’ and difficult-flowering ‘Nagafu No.2’) using transcriptome sequencing data, and most MdHMs were involved in flower induction processes. Subsequent quantitative real-time PCR was then performed to confirm the expression levels of candidate MdHMs under different flowering-related circumstances. Conclusion MdHMs were involved in, and responsive to, flower induction in apple. This study established an MdHMs platform that provided valuable information and presented enriched biological theories on flower induction in apple. The data could also be used to study the evolutionary history and functional prospects of MdHMs genes, as well as other trees

    Chromatin Remodeling Complex SWR1 Regulates Root Development by Affecting the Accumulation of Reactive Oxygen Species (ROS)

    No full text
    Reactive oxygen species (ROS), a type of oxygen monoelectronic reduction product, play integral roles in root growth and development. The epigenetic mechanism plays a critical role in gene transcription and expression; however, its regulation of ROS metabolism in root development is still limited. We found that the chromatin remodeling complex SWR1 regulates root length and lateral root formation in Arabidopsis. Our transcriptome results and gene ontology (GO) enrichment analysis showed that the oxidoreductase activity-related genes significantly changed in mutants for the Arabidopsis SWR1 complex components, such as arp6 and pie1, and histone variant H2A.Z triple mutant hta8 hta9 hta11. The three encoding genes in Arabidopsis are the three H2A.Z variants hta8, hta9, and hta11. Histochemical assays revealed that the SWR1 complex affects ROS accumulation in roots. Furthermore, chromatin immunoprecipitation quantitative real-time PCR (ChIP-qPCR) analysis showed that the reduced H2A.Z deposition in oxidoreductase activity-related genes caused ROS to accumulate in arp6, pie1, and hta8 hta9 hta11. H2A.Z deposition-deficient mutants decreased after the trimethylation of lysine 4 on histone H3 (H3K4me3) modifications and RNA polymerase II (Pol II) enrichment, and increased after the trimethylation of lysine 27 on histone H3 (H3K27me3) modifications, which may account for the expression change in oxidoreductase activity-related genes. In summary, our results revealed that the chromatin complex SWR1 regulates ROS accumulation in root development, highlighting the critical role of epigenetic mechanisms

    Ectopic Overexpression of Pineapple Transcription Factor AcWRKY31 Reduces Drought and Salt Tolerance in Rice and <i>Arabidopsis</i>

    No full text
    Pineapple (Ananas comosus (L.) Merr.) is an important tropical fruit with high economic value, and its growth and development are affected by the external environment. Drought and salt stresses are common adverse conditions that can affect crop quality and yield. WRKY transcription factors (TFs) have been demonstrated to play critical roles in plant stress response, but the function of pineapple WRKY TFs in drought and salt stress tolerance is largely unknown. In this study, a pineapple AcWRKY31 gene was cloned and characterized. AcWRKY31 is a nucleus-localized protein that has transcriptional activation activity. We observed that the panicle length and seed number of AcWRKY31 overexpression transgenic rice plants were significantly reduced compared with that in wild-type plant ZH11. RNA-seq technology was used to identify the differentially expressed genes (DEGs) between wild-type ZH11 and AcWRKY31 overexpression transgenic rice plants. In addition, ectopic overexpression of AcWRKY31 in rice and Arabidopsis resulted in plant oversensitivity to drought and salt stress. qRT-PCR analysis showed that the expression levels of abiotic stress-responsive genes were significantly decreased in the transgenic plants compared with those in the wild-type plants under drought and salt stress conditions. In summary, these results showed that ectopic overexpression of AcWRKY31 reduced drought and salt tolerance in rice and Arabidopsis and provided a candidate gene for crop variety improvement

    <i>GmbZIP152</i>, a Soybean bZIP Transcription Factor, Confers Multiple Biotic and Abiotic Stress Responses in Plant

    No full text
    Soybean is one of the most important food crops in the world. However, with the environmental change in recent years, many environmental factors like drought, salinity, heavy metal, and disease seriously affected the growth and development of soybean, causing substantial economic losses. In this study, we screened a bZIP transcription factor gene, GmbZIP152, which is significantly induced by Sclerotinia sclerotiorum (S. sclerotiorum), phytohormones, salt-, drought-, and heavy metal stresses in soybean. We found that overexpression of GmbZIP152 in Arabidopsis (OE-GmbZIP152) enhances the resistance to S. sclerotiorum and the tolerance of salt, drought, and heavy metal stresses compared to wild-type (WT). The antioxidant enzyme related genes (including AtCAT1, AtSOD, and AtPOD1) and their enzyme activities are induced by S. sclerotiorum, salt, drought, and heavy metal stress in OE-GmbZIP152 compared to WT. Furthermore, we also found that the expression level of biotic- and abiotic-related marker genes (AtLOX6, AtACS6, AtERF1, and AtABI2, etc.) were increased in OE-GmbZIP152 compared to WT under S. sclerotiorum and abiotic stresses. Moreover, we performed a Chromatin immunoprecipitation (ChIP) assay and found that GmbZIP152 could directly bind to promoters of ABA-, JA-, ETH-, and SA-induced biotic- and abiotic-related genes in soybean. Altogether, GmbZIP152 plays an essential role in soybean response to biotic and abiotic stresses
    corecore