16,465 research outputs found

    A Note on Gauss-Bonnet Holographic Superconductors

    Full text link
    We present an analytic treatment near the phase transition for the critical temperature of (3+1)-dimensional holographic superconductors in Einstein-Gauss-Bonnet gravity with backreaction. We find that the backreaction makes the critical temperature of the superconductor decrease and condensation harder. This is consistent with previous numerical results.Comment: 6 pages, typos corrected, references added, published versio

    Crossing w=-1 in Gauss-Bonnet Brane World with Induced Gravity

    Full text link
    Recent type Ia supernovas data seemingly favor a dark energy model whose equation of state w(z)w(z) crosses -1 very recently, which is a much more amazing problem than the acceleration of the universe. In this paper we show that it is possible to realize such a crossing without introducing any phantom component in a Gauss-Bonnet brane world with induced gravity, where a four dimensional curvature scalar on the brane and a five dimensional Gauss-Bonnet term in the bulk are present. In this realization, the Gauss-Bonnet term and the mass parameter in the bulk play a crucial role.Comment: Revtex 16 pages including 10 eps files, references added, to appear in Comm. Theor. Phy

    Crossing the phantom divide in an interacting generalized Chaplygin gas

    Full text link
    Unified generalized Chaplygin gas models assuming an interaction between dark energy and dark matter fluids have been previously proposed. Following these ideas, we consider a particular relation between dark densities, which allows the possibility of a time varying equation of state for dark energy that crosses the phantom divide at a recent epoch. Moreover, these densities decay during all the evolution of the Universe, avoiding a Big Rip. We find also a scaling solution, i.e. these densities are asymptotically proportional in the future, which contributes to the solution of the coincidence problem.Comment: Improved version, 10 pages, 4 figures, References adde

    Comparison of dark energy models: A perspective from the latest observational data

    Full text link
    In this paper, we compare some popular dark energy models under the assumption of a flat universe by using the latest observational data including the type Ia supernovae Constitution compilation, the baryon acoustic oscillation measurement from the Sloan Digital Sky Survey, the cosmic microwave background measurement given by the seven-year Wilkinson Microwave Anisotropy Probe observations and the determination of H0H_0 from the Hubble Space Telescope. Model comparison statistics such as the Bayesian and Akaike information criteria are applied to assess the worth of the models. These statistics favor models that give a good fit with fewer parameters. Based on this analysis, we find that the simplest cosmological constant model that has only one free parameter is still preferred by the current data. For other dynamical dark energy models, we find that some of them, such as the α\alpha dark energy, constant ww, generalized Chaplygin gas, Chevalliear-Polarski-Linder parametrization, and holographic dark energy models, can provide good fits to the current data, and three of them, namely, the Ricci dark energy, agegraphic dark energy, and Dvali-Gabadadze-Porrati models, are clearly disfavored by the data.Comment: 19 pages, 10 figures; new data used, typos fixed; version for publication in SCIENCE CHINA Physics, Mechanics & Astronom

    Super-acceleration on the Brane by Energy Flow from the Bulk

    Full text link
    We consider a brane cosmological model with energy exchange between brane and bulk. Parameterizing the energy exchange term by the scale factor and Hubble parameter, we are able to exactly solve the modified Friedmann equation on the brane. In this model, the equation of state for the effective dark energy has a transition behavior changing from wdeeff>1w_{de}^{eff}>-1 to wdeeff<1w_{de}^{eff}<-1, while the equation of state for the dark energy on the brane has w>1w>-1. Fitting data from type Ia supernova, Sloan Digital Sky Survey and Wilkinson Microwave Anisotropy Probe, our universe is predicted now in the state of super-acceleration with wde0eff=1.21w_{de0}^{eff}=-1.21.Comment: Revtex, 11 pages including 2 figures,v2: tpos fixed, references added, to appear in JCA

    Natural Phantom Dark Energy, Wiggling Hubble Parameter H(z)H(z) and Direct H(z)H(z) Data

    Full text link
    Recent direct H(z)H(z) data indicate that the parameter H(z)H(z) may wiggle with respect to zz. On the other hand the luminosity distance data of supernovae flatten the wiggles of H(z)H(z) because of integration effect. It is expected that the fitting results can be very different in a model permitting a wiggling H(z)H(z) because the data of supernovae is highly degenerated to such a model. As an example the natural phantom dark energy is investigated in this paper. The dynamical property of this model is studied. The model is fitted by the direct H(z)H(z) data set and the SNLS data set, respectively. And the results are quite different, as expected. The quantum stability of this model is also shortly discussed. We find it is a viable model if we treat it as an effective theory truncated by an upperbound.Comment: 14 pages, 2 figures, discussions on the stability added, conclusions not change

    Reconstructing quintom from WMAP 5-year observations: Generalized ghost condensate

    Full text link
    In the 5-year WMAP data analysis, a new parametrization form for dark energy equation-of-state was used, and it has been shown that the equation-of-state, w(z)w(z), crosses the cosmological-constant boundary w=1w=-1. Based on this observation, in this paper, we investigate the reconstruction of quintom dark energy model. As a single-real-scalar-field model of dark energy, the generalized ghost condensate model provides us with a successful mechanism for realizing the quintom-like behavior. Therefore, we reconstruct this scalar-field quintom dark energy model from the WMAP 5-year observational results. As a comparison, we also discuss the quintom reconstruction based on other specific dark energy ansatzs, such as the CPL parametrization and the holographic dark energy scenarios.Comment: 8 pages, 11 figure

    Hessence: A New View of Quintom Dark Energy

    Full text link
    Recently a lot of attention has been drawn to build dark energy model in which the equation-of-state parameter ww can cross the phantom divide w=1w=-1. One of models to realize crossing the phantom divide is called quintom model, in which two real scalar fields appears, one is a normal scalar field and the other is a phantom-type scalar field. In this paper we propose a non-canonical complex scalar field as the dark energy, which we dub ``hessence'', to implement crossing the phantom divide, in a similar sense as the quintom dark energy model. In the hessence model, the dark energy is described by a single field with an internal degree of freedom rather than two independent real scalar fields. However, the hessence is different from an ordinary complex scalar field, we show that the hessence can avoid the difficulty of the Q-balls formation which gives trouble to the spintessence model (An ordinary complex scalar field acts as the dark energy). Furthermore, we find that, by choosing a proper potential, the hessence could correspond to a Chaplygin gas at late times.Comment: Latex2e, 12 pages, no figure; v2: discussions and references added, 14 pages, 3 eps figures; v3: published versio

    Interacting model of new agegraphic dark energy: observational constraints and age problem

    Full text link
    Many dark energy models fail to pass the cosmic age test because of the old quasar APM 08279+5255 at redshift z=3.91z=3.91, the Λ\LambdaCDM model and holographic dark energy models being no exception. In this paper, we focus on the topic of age problem in the new agegraphic dark energy (NADE) model. We determine the age of the universe in the NADE model by fitting the observational data, including type Ia supernovae (SNIa), baryon acoustic oscillations (BAO) and the cosmic microwave background (CMB). We find that the NADE model also faces the challenge of the age problem caused by the old quasar APM 08279+5255. In order to overcome such a difficulty, we consider the possible interaction between dark energy and dark matter. We show that this quasar can be successfully accommodated in the interacting new agegraphic dark energy (INADE) model at the 2σ2\sigma level under the current observational constraints.Comment: 12 pages, 5 figures; typos corrected; version for publication in SCIENCE CHINA Physics, Mechanics & Astronom
    corecore