802 research outputs found

    Crossing w=-1 in Gauss-Bonnet Brane World with Induced Gravity

    Full text link
    Recent type Ia supernovas data seemingly favor a dark energy model whose equation of state w(z)w(z) crosses -1 very recently, which is a much more amazing problem than the acceleration of the universe. In this paper we show that it is possible to realize such a crossing without introducing any phantom component in a Gauss-Bonnet brane world with induced gravity, where a four dimensional curvature scalar on the brane and a five dimensional Gauss-Bonnet term in the bulk are present. In this realization, the Gauss-Bonnet term and the mass parameter in the bulk play a crucial role.Comment: Revtex 16 pages including 10 eps files, references added, to appear in Comm. Theor. Phy

    Two-to-one resonant multi-modal dynamics of horizontal/inclined cables. Part I : theoretical formulation and model validation

    Get PDF
    This paper is first of the two papers dealingwith analytical investigation of resonant multimodal dynamics due to 2:1 internal resonances in the finite-amplitude free vibrations of horizontal/inclined cables. Part I deals with theoretical formulation and validation of the general cable model. Approximate nonlinear partial differential equations of 3-D coupled motion of small sagged cables - which account for both spatio-temporal variation of nonlinear dynamic tension and system asymmetry due to inclined sagged configurations - are presented. A multidimensional Galerkin expansion of the solution ofnonplanar/planar motion is performed, yielding a complete set of system quadratic/cubic coefficients. With the aim of parametrically studying the behavior of horizontal/inclined cables in Part II [25], a second-order asymptotic analysis under planar 2:1 resonance is accomplished by the method of multiple scales. On accounting for higher-order effectsof quadratic/cubic nonlinearities, approximate closed form solutions of nonlinear amplitudes, frequencies and dynamic configurations of resonant nonlinear normal modes reveal the dependence of cable response on resonant/nonresonant modal contributions. Depending on simplifying kinematic modeling and assigned system parameters, approximate horizontal/inclined cable models are thoroughly validated by numerically evaluating statics and non-planar/planar linear/non-linear dynamics against those of the exact model. Moreover, the modal coupling role and contribution of system longitudinal dynamics are discussed for horizontal cables, showing some meaningful effects due to kinematic condensation

    Second-order corrections to slow-roll inflation in the brane cosmology

    Full text link
    We calculate the power spectrum, spectral index, and running spectral index for the RS-II brane inflation in the high-energy regime using the slow-roll expansion. There exist several modifications. As an example, we take the power-law inflation by choosing an inverse power-law potential. When comparing these with those arisen in the standard inflation, we find that the power spectrum is enhanced and the spectral index is suppressed, while the running spectral index becomes zero as in the standard inflation. However, since second-order corrections are rather small, these could not play a role of distinguishing between standard and brane inflations.Comment: 6 page

    Generalized Second Law of Thermodynamics on the Event Horizon for Interacting Dark Energy

    Full text link
    Here we are trying to find the conditions for the validity of the generalized second law of thermodynamics (GSLT) assuming the first law of thermodynamics on the event horizon in both cases when the FRW universe is filled with interacting two fluid system- one in the form of cold dark matter and the other is either holographic dark energy or new age graphic dark energy. Using the recent observational data we have found that GSLT holds both in quintessence era as well as in phantom era for new age graphic model while for holographic dark energy GSLT is valid only in phantom era.Comment: 8 pages, 2 figure

    Notes on dark energy interacting with dark matter and unparticle in loop quantum cosmology

    Full text link
    We investigate the behavior of dark energy interacting with dark matter and unparticle in the framework of loop quantum cosmology. In four toy models, we study the interaction between the cosmic components by choosing different coupling functions representing the interaction. We found that there are only two attractor solutions namely dark energy dominated and dark matter dominated Universe. The other two models are unstable, as they predict either a dark energy filled Universe or one completely devoid of it.Comment: 9 pages, 10 figures. v2: Minor revisions, matches published versio

    Unconventional Cosmology

    Full text link
    I review two cosmological paradigms which are alternative to the current inflationary scenario. The first alternative is the "matter bounce", a non-singular bouncing cosmology with a matter-dominated phase of contraction. The second is an "emergent" scenario, which can be implemented in the context of "string gas cosmology". I will compare these scenarios with the inflationary one and demonstrate that all three lead to an approximately scale-invariant spectrum of cosmological perturbations.Comment: 45 pages, 10 figures; invited lectures at the 6th Aegean Summer School "Quantum Gravity and Quantum Cosmology", Chora, Naxos, Greece, Sept. 12 - 17 2012, to be publ. in the proceedings; these lecture notes form an updated version of arXiv:1003.1745 and arXiv:1103.227

    Interacting Agegraphic Dark Energy

    Full text link
    A new dark energy model, named "agegraphic dark energy", has been proposed recently, based on the so-called K\'{a}rolyh\'{a}zy uncertainty relation, which arises from quantum mechanics together with general relativity. In this note, we extend the original agegraphic dark energy model by including the interaction between agegraphic dark energy and pressureless (dark) matter. In the interacting agegraphic dark energy model, there are many interesting features different from the original agegraphic dark energy model and holographic dark energy model. The similarity and difference between agegraphic dark energy and holographic dark energy are also discussed.Comment: 10 pages, 5 figures, revtex4; v2: references added; v3: accepted by Eur. Phys. J. C; v4: published versio

    Geometric and thermodynamic properties in Gauss-Bonnet gravity

    Full text link
    In this paper, the generalized second law (GSL) of thermodynamics and entropy is revisited in the context of cosmological models in Gauss-Bonnet gravity with the boundary of the universe is assumed to be enclosed by the dynamical apparent horizon. The model is best fitted with the observational data for distance modulus. The best fitted geometric and thermodynamic parameters such as equation of state parameter, deceleration parameter and entropy are derived. To link between thermodynamic and geometric parameters, the "entropy rate of change multiplied by the temperature" as a model independent thermodynamic state parameter is also derived. The results show that the model is in good agreement with the observational analysis.Comment: 13 pages, 13 figures, to be published in Astrophysics and Space Sc

    Dark energy from conformal symmetry breaking

    Full text link
    The breakdown of conformal symmetry in a conformally invariant scalar-tensor gravitational model is revisited in the cosmological context. Although the old scenario of conformal symmetry breaking in cosmology containing scalar field has already been used in many earlier works, it seems that no special attention has been paid for the investigation on the possible connection between the breakdown of conformal symmetry and the existence of dark energy. In this paper, it is shown that the old scenario of conformal symmetry breaking in cosmology, if properly interpreted, not only has a potential ability to describe the origin of dark energy as a symmetry breaking effect, but also may resolve the coincidence problem.Comment: 11 pages, minor revision, published online in EPJ

    Interacting entropy-corrected holographic dark energy with apparent horizon as an infrared cutoff

    Full text link
    In this work we consider the entropy-corrected version of interacting holographic dark energy (HDE), in the non-flat universe enclosed by apparent horizon. Two corrections of entropy so-called logarithmic 'LEC' and power-law 'PLEC' in HDE model with apparent horizon as an IR-cutoff are studied. The ratio of dark matter to dark energy densities uu, equation of state parameter wDw_D and deceleration parameter qq are obtained. We show that the cosmic coincidence is satisfied for both interacting models. By studying the effect of interaction in EoS parameter, we see that the phantom divide may be crossed and also find that the interacting models can drive an acceleration expansion at the present and future, while in non-interacting case, this expansion can happen only at the early time. The graphs of deceleration parameter for interacting models, show that the present acceleration expansion is preceded by a sufficiently long period deceleration at past. Moreover, the thermodynamical interpretation of interaction between LECHDE and dark matter is described. We obtain a relation between the interaction term of dark components and thermal fluctuation in a non-flat universe, bounded by the apparent horizon. In limiting case, for ordinary HDE, the relation of interaction term versus thermal fluctuation is also calculated.Comment: 20 pages, 8 figures, figures changed, some Ref. is added, changed some sentences, accepted by General relativity and gravitation (GERG
    • …
    corecore