708 research outputs found
The Formation of Fragments at Corotation in Isothermal Protoplanetary Disks
Numerical hydrodynamics simulations have established that disks which are
evolved under the condition of local isothermality will fragment into small
dense clumps due to gravitational instabilities when the Toomre stability
parameter is sufficiently low. Because fragmentation through disk
instability has been suggested as a gas giant planet formation mechanism, it is
important to understand the physics underlying this process as thoroughly as
possible. In this paper, we offer analytic arguments for why, at low ,
fragments are most likely to form first at the corotation radii of growing
spiral modes, and we support these arguments with results from 3D hydrodynamics
simulations.Comment: 21 pages, 1 figur
Gravitational Geometric Phase in the Presence of Torsion
We investigate the relativistic and non-relativistic quantum dynamics of a
neutral spin-1/2 particle submitted an external electromagnetic field in the
presence of a cosmic dislocation. We analyze the explicit contribution of the
torsion in the geometric phase acquired in the dynamic of this neutral
spinorial particle. We discuss the influence of the torsion in the relativistic
geometric phase. Using the Foldy-Wouthuysen approximation, the non-relativistic
quantum dynamics are studied and the influence of the torsion in the
Aharonov-Casher and He-McKellar-Wilkens effects are discussed.Comment: 14 pages, no figur
Efficient Resolution of Anisotropic Structures
We highlight some recent new delevelopments concerning the sparse
representation of possibly high-dimensional functions exhibiting strong
anisotropic features and low regularity in isotropic Sobolev or Besov scales.
Specifically, we focus on the solution of transport equations which exhibit
propagation of singularities where, additionally, high-dimensionality enters
when the convection field, and hence the solutions, depend on parameters
varying over some compact set. Important constituents of our approach are
directionally adaptive discretization concepts motivated by compactly supported
shearlet systems, and well-conditioned stable variational formulations that
support trial spaces with anisotropic refinements with arbitrary
directionalities. We prove that they provide tight error-residual relations
which are used to contrive rigorously founded adaptive refinement schemes which
converge in . Moreover, in the context of parameter dependent problems we
discuss two approaches serving different purposes and working under different
regularity assumptions. For frequent query problems, making essential use of
the novel well-conditioned variational formulations, a new Reduced Basis Method
is outlined which exhibits a certain rate-optimal performance for indefinite,
unsymmetric or singularly perturbed problems. For the radiative transfer
problem with scattering a sparse tensor method is presented which mitigates or
even overcomes the curse of dimensionality under suitable (so far still
isotropic) regularity assumptions. Numerical examples for both methods
illustrate the theoretical findings
Stability analysis of agegraphic dark energy in Brans-Dicke cosmology
Stability analysis of agegraphic dark energy in Brans-Dicke theory is
presented in this paper. We constrain the model parameters with the
observational data and thus the results become broadly consistent with those
expected from experiment. Stability analysis of the model without best fitting
shows that universe may begin from an unstable state passing a saddle point and
finally become stable in future. However, with the best fitted model, There is
no saddle intermediate state. The agegraphic dark energy in the model by itself
exhibits a phantom behavior. However, contribution of cold dark matter on the
effective energy density modifies the state of teh universe from phantom phase
to quintessence one. The statefinder diagnosis also indicates that the universe
leaves an unstable state in the past, passes the LCDM state and finally
approaches the sable state in future.Comment: 15 pages, 12 figure
Does accelerating universe indicates Brans-Dicke theory
The evolution of universe in Brans-Dicke (BD) theory is discussed in this
paper.
Considering a parameterized scenario for BD scalar field
which plays the role of gravitational "constant" ,
we apply the Markov Chain Monte Carlo method to investigate a global
constraints on BD theory with a self-interacting potential according to the
current observational data: Union2 dataset of type supernovae Ia (SNIa),
high-redshift Gamma-Ray Bursts (GRBs) data, observational Hubble data (OHD),
the cluster X-ray gas mass fraction, the baryon acoustic oscillation (BAO), and
the cosmic microwave background (CMB) data. It is shown that an expanded
universe from deceleration to acceleration is given in this theory, and the
constraint results of dimensionless matter density and parameter
are, and
which is consistent with the
result of current experiment exploration, . In
addition, we use the geometrical diagnostic method, jerk parameter , to
distinguish the BD theory and cosmological constant model in Einstein's theory
of general relativity.Comment: 16 pages, 3 figure
Low Complexity Regularization of Linear Inverse Problems
Inverse problems and regularization theory is a central theme in contemporary
signal processing, where the goal is to reconstruct an unknown signal from
partial indirect, and possibly noisy, measurements of it. A now standard method
for recovering the unknown signal is to solve a convex optimization problem
that enforces some prior knowledge about its structure. This has proved
efficient in many problems routinely encountered in imaging sciences,
statistics and machine learning. This chapter delivers a review of recent
advances in the field where the regularization prior promotes solutions
conforming to some notion of simplicity/low-complexity. These priors encompass
as popular examples sparsity and group sparsity (to capture the compressibility
of natural signals and images), total variation and analysis sparsity (to
promote piecewise regularity), and low-rank (as natural extension of sparsity
to matrix-valued data). Our aim is to provide a unified treatment of all these
regularizations under a single umbrella, namely the theory of partial
smoothness. This framework is very general and accommodates all low-complexity
regularizers just mentioned, as well as many others. Partial smoothness turns
out to be the canonical way to encode low-dimensional models that can be linear
spaces or more general smooth manifolds. This review is intended to serve as a
one stop shop toward the understanding of the theoretical properties of the
so-regularized solutions. It covers a large spectrum including: (i) recovery
guarantees and stability to noise, both in terms of -stability and
model (manifold) identification; (ii) sensitivity analysis to perturbations of
the parameters involved (in particular the observations), with applications to
unbiased risk estimation ; (iii) convergence properties of the forward-backward
proximal splitting scheme, that is particularly well suited to solve the
corresponding large-scale regularized optimization problem
Entropy and statefinder diagnosis in chameleon cosmology
In this paper, the generalized second law (GSL) of thermodynamics and entropy
is revisited in the context of cosmological models with bouncing behavior such
as chameleon cosmology where the boundary of the universe is assumed to be
enclosed by the dynamical apparent horizon. From a thermodynamic point of view,
to link between thermodynamic and geometric parameters in cosmological models,
we introduce "entropy rate of change multiplied by the temperature" as a model
independent thermodynamic state parameter together with the well known statefinder to differentiate the dark energy models.Comment: 11 pages, 5 figures. will be published in Astrophys. Space Sc
Single Spin Asymmetry in Polarized Proton-Proton Elastic Scattering at GeV
We report a high precision measurement of the transverse single spin
asymmetry at the center of mass energy GeV in elastic
proton-proton scattering by the STAR experiment at RHIC. The was measured
in the four-momentum transfer squared range \GeVcSq, the region of a significant interference between the
electromagnetic and hadronic scattering amplitudes. The measured values of
and its -dependence are consistent with a vanishing hadronic spin-flip
amplitude, thus providing strong constraints on the ratio of the single
spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated
by the Pomeron amplitude at this , we conclude that this measurement
addresses the question about the presence of a hadronic spin flip due to the
Pomeron exchange in polarized proton-proton elastic scattering.Comment: 12 pages, 6 figure
Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV
We report a measurement of the longitudinal double-spin asymmetry A_LL and
the differential cross section for inclusive Pi0 production at midrapidity in
polarized proton collisions at sqrt(s) = 200 GeV. The cross section was
measured over a transverse momentum range of 1 < p_T < 17 GeV/c and found to be
in good agreement with a next-to-leading order perturbative QCD calculation.
The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T <
11 GeV/c and excludes a maximal positive gluon polarization in the proton. The
mean transverse momentum fraction of Pi0's in their parent jets was found to be
around 0.7 for electromagnetically triggered events.Comment: 6 pages, 3 figures, submitted to Phys. Rev. D (RC
Azimuthal anisotropy and correlations in p+p, d+Au and Au+Au collisions at 200 GeV
We present the first measurement of directed flow () at RHIC. is
found to be consistent with zero at pseudorapidities from -1.2 to 1.2,
then rises to the level of a couple of percent over the range . The latter observation is similar to data from NA49 if the SPS rapidities
are shifted by the difference in beam rapidity between RHIC and SPS.
Back-to-back jets emitted out-of-plane are found to be suppressed more if
compared to those emitted in-plane, which is consistent with {\it jet
quenching}. Using the scalar product method, we systematically compared
azimuthal correlations from p+p, d+Au and Au+Au collisions. Flow and non-flow
from these three different collision systems are discussed.Comment: Quark Matter 2004 proceeding, 4 pages, 3 figure
- …