4,164 research outputs found

    catena-Poly[[diaqua­[(4-tolyl­sulfan­yl)acetato-κO]cadmium(II)]-μ-4,4′-bipyridine-κ2 N:N′]

    Get PDF
    The title complex, [Cd(C9H9O2S)2(C10H8N2)(H2O)2]n, has a linear chain structure. The central CdII ion is in a slightly disorted octa­hedral environment, coordinated by two aqua ligands, two (4-tolyl­sulfan­yl)acetate ligands and two bridging 4,4′-bipyridine ligands. The CdII ion lies on a twofold rotation axis. Inter­molecular O—H⋯O hydrogen bonds connect adjacent chains, forming a layer structure. An intramolecular O—H⋯O hydrogen bond is also present

    Flavonoids with α-glucosidase inhibitory activities and their contents in the leaves of Morus atropurpurea

    Get PDF
    BACKGROUND: This study aims to isolate the α-glucosidase inhibitory compounds from mulberry leaves (Morus atropurpurea Roxb., Moraceae) and to develop an analytical method for quantification of the compounds. METHODS: Four flavonoids, rutin (1), isoquercetin (2), kaempferol-3-O-rutinoside (3) and astragalin (4), were isolated by column chromatography from mulberry leaf water extracts (MWE). The α-glucosidase inhibitory activities of MWE and the four isolated compounds were evaluated by a microplate-based in vitro assay. The content of the isolated flavonoids in M. atropurpurea leaves purchased from different local herbal stores or collected in different locations was determined by high performance liquid chromatography. RESULTS: The four flavonoids (1–4) showed α-glucosidase inhibitory activities, with rutin (1) and astragalin (4) showing high α-glucosidase inhibitory activities (IC(50) values of 13.19 ± 1.10 and 15.82 ± 1.11 μM, respectively). The total contents of the four flavonoids were different among eight samples examined, ranging from 4.34 mg/g to 0.53 mg/g. CONCLUSIONS: The four flavonoids in M. atropurpurea leaves could inhibit α-glucosidase activity
    corecore