40 research outputs found

    Discuss Before Moving: Visual Language Navigation via Multi-expert Discussions

    Full text link
    Visual language navigation (VLN) is an embodied task demanding a wide range of skills encompassing understanding, perception, and planning. For such a multifaceted challenge, previous VLN methods totally rely on one model's own thinking to make predictions within one round. However, existing models, even the most advanced large language model GPT4, still struggle with dealing with multiple tasks by single-round self-thinking. In this work, drawing inspiration from the expert consultation meeting, we introduce a novel zero-shot VLN framework. Within this framework, large models possessing distinct abilities are served as domain experts. Our proposed navigation agent, namely DiscussNav, can actively discuss with these experts to collect essential information before moving at every step. These discussions cover critical navigation subtasks like instruction understanding, environment perception, and completion estimation. Through comprehensive experiments, we demonstrate that discussions with domain experts can effectively facilitate navigation by perceiving instruction-relevant information, correcting inadvertent errors, and sifting through in-consistent movement decisions. The performances on the representative VLN task R2R show that our method surpasses the leading zero-shot VLN model by a large margin on all metrics. Additionally, real-robot experiments display the obvious advantages of our method over single-round self-thinking.Comment: Submitted to ICRA 202

    DGMem: Learning Visual Navigation Policy without Any Labels by Dynamic Graph Memory

    Full text link
    In recent years, learning-based approaches have demonstrated significant promise in addressing intricate navigation tasks. Traditional methods for training deep neural network navigation policies rely on meticulously designed reward functions or extensive teleoperation datasets as navigation demonstrations. However, the former is often confined to simulated environments, and the latter demands substantial human labor, making it a time-consuming process. Our vision is for robots to autonomously learn navigation skills and adapt their behaviors to environmental changes without any human intervention. In this work, we discuss the self-supervised navigation problem and present Dynamic Graph Memory (DGMem), which facilitates training only with on-board observations. With the help of DGMem, agents can actively explore their surroundings, autonomously acquiring a comprehensive navigation policy in a data-efficient manner without external feedback. Our method is evaluated in photorealistic 3D indoor scenes, and empirical studies demonstrate the effectiveness of DGMem.Comment: 8 pages, 6 figure

    Robust Navigation with Cross-Modal Fusion and Knowledge Transfer

    Full text link
    Recently, learning-based approaches show promising results in navigation tasks. However, the poor generalization capability and the simulation-reality gap prevent a wide range of applications. We consider the problem of improving the generalization of mobile robots and achieving sim-to-real transfer for navigation skills. To that end, we propose a cross-modal fusion method and a knowledge transfer framework for better generalization. This is realized by a teacher-student distillation architecture. The teacher learns a discriminative representation and the near-perfect policy in an ideal environment. By imitating the behavior and representation of the teacher, the student is able to align the features from noisy multi-modal input and reduce the influence of variations on navigation policy. We evaluate our method in simulated and real-world environments. Experiments show that our method outperforms the baselines by a large margin and achieves robust navigation performance with varying working conditions.Comment: Accepted by ICRA 202

    Seeing What You Miss: Vision-Language Pre-training with Semantic Completion Learning

    Full text link
    Cross-modal alignment is essential for vision-language pre-training (VLP) models to learn the correct corresponding information across different modalities. For this purpose, inspired by the success of masked language modeling (MLM) tasks in the NLP pre-training area, numerous masked modeling tasks have been proposed for VLP to further promote cross-modal interactions. The core idea of previous masked modeling tasks is to focus on reconstructing the masked tokens based on visible context for learning local-to-local alignment. However, most of them pay little attention to the global semantic features generated for the masked data, resulting in the limited cross-modal alignment ability of global representations. Therefore, in this paper, we propose a novel Semantic Completion Learning (SCL) task, complementary to existing masked modeling tasks, to facilitate global-to-local alignment. Specifically, the SCL task complements the missing semantics of masked data by capturing the corresponding information from the other modality, promoting learning more representative global features which have a great impact on the performance of downstream tasks. Moreover, we present a flexible vision encoder, which enables our model to perform image-text and video-text multimodal tasks simultaneously. Experimental results show that our proposed method obtains state-of-the-art performance on various vision-language benchmarks, such as visual question answering, image-text retrieval, and video-text retrieval

    Neural Chinese Word Segmentation with Lexicon and Unlabeled Data via Posterior Regularization

    Full text link
    Existing methods for CWS usually rely on a large number of labeled sentences to train word segmentation models, which are expensive and time-consuming to annotate. Luckily, the unlabeled data is usually easy to collect and many high-quality Chinese lexicons are off-the-shelf, both of which can provide useful information for CWS. In this paper, we propose a neural approach for Chinese word segmentation which can exploit both lexicon and unlabeled data. Our approach is based on a variant of posterior regularization algorithm, and the unlabeled data and lexicon are incorporated into model training as indirect supervision by regularizing the prediction space of CWS models. Extensive experiments on multiple benchmark datasets in both in-domain and cross-domain scenarios validate the effectiveness of our approach.Comment: 7 pages, 11 figures, accepted by the 2019 World Wide Web Conference (WWW '19

    Methylprednisolone as Adjunct to Endovascular Thrombectomy for Large-Vessel Occlusion Stroke

    Get PDF
    Importance It is uncertain whether intravenous methylprednisolone improves outcomes for patients with acute ischemic stroke due to large-vessel occlusion (LVO) undergoing endovascular thrombectomy. Objective To assess the efficacy and adverse events of adjunctive intravenous low-dose methylprednisolone to endovascular thrombectomy for acute ischemic stroke secondary to LVO. Design, Setting, and Participants This investigator-initiated, randomized, double-blind, placebo-controlled trial was implemented at 82 hospitals in China, enrolling 1680 patients with stroke and proximal intracranial LVO presenting within 24 hours of time last known to be well. Recruitment took place between February 9, 2022, and June 30, 2023, with a final follow-up on September 30, 2023.InterventionsEligible patients were randomly assigned to intravenous methylprednisolone (n = 839) at 2 mg/kg/d or placebo (n = 841) for 3 days adjunctive to endovascular thrombectomy. Main Outcomes and Measures The primary efficacy outcome was disability level at 90 days as measured by the overall distribution of the modified Rankin Scale scores (range, 0 [no symptoms] to 6 [death]). The primary safety outcomes included mortality at 90 days and the incidence of symptomatic intracranial hemorrhage within 48 hours. Results Among 1680 patients randomized (median age, 69 years; 727 female [43.3%]), 1673 (99.6%) completed the trial. The median 90-day modified Rankin Scale score was 3 (IQR, 1-5) in the methylprednisolone group vs 3 (IQR, 1-6) in the placebo group (adjusted generalized odds ratio for a lower level of disability, 1.10 [95% CI, 0.96-1.25]; P = .17). In the methylprednisolone group, there was a lower mortality rate (23.2% vs 28.5%; adjusted risk ratio, 0.84 [95% CI, 0.71-0.98]; P = .03) and a lower rate of symptomatic intracranial hemorrhage (8.6% vs 11.7%; adjusted risk ratio, 0.74 [95% CI, 0.55-0.99]; P = .04) compared with placebo. Conclusions and Relevance Among patients with acute ischemic stroke due to LVO undergoing endovascular thrombectomy, adjunctive methylprednisolone added to endovascular thrombectomy did not significantly improve the degree of overall disability.Trial RegistrationChiCTR.org.cn Identifier: ChiCTR210005172

    Axial Cyclic Testing of Concrete-Filled Steel Tube Columns in Diagrid Structures

    No full text
    Inclined concrete-filled steel tube (CFST) columns in a diagrid structure system can efficiently carry large vertical loads and horizontal forces. This paper presents an experimental study of the stress characteristics of engineered inclined CFST columns under axial cyclic loading. Ten specimens were tested, including two hollow steel tube (HST) columns and eight CFST columns, and the influences of loading scheme, aspect ratio, concrete strength, and steel ratio were examined. The seismic behaviours were investigated, including mechanical behaviour, failure modes and hysteretic curves, and ductility, and the interaction between the steel tube and concrete was examined as well. Better ductility and energy dissipation capacity are achieved in the tension direction, whereas higher bearing capacity and stiffness are achieved in the compression direction. Compared with hollow steel tube columns, the supporting effect of concrete on the steel tube for CFST columns in tension and the restraining effect of the steel tube on concrete for CFST columns in compression ensure higher capacity, deformability, and energy dissipation capacity

    Insights into friction properties and mechanism of self-lubricating MoVN-Ag films at high temperature

    No full text
    MoVN is a promising high temperature lubricating material. In this study, the MoVN-Ag films with different content of Ag are synthesized for lubrication in wide temperature range using pulsed DC reactive magnetron sputtering. The effect of Ag content on the mechanical properties and tribological behavior of the films at 25 degrees C, 300 degrees C, 500 degrees C and 700 degrees C is investigated. The results reveal that although the doping of silver is detrimental to the mechanical properties of MoVN films, it can improve the tribological properties of the films. The optimized MoVN-Ag film with Ag content of 45.6 at.% shows a promising self-lubricating performance and low wear rate at different test temperatures. The average friction coefficients are as low as about 0.19 and 0.28 at 500 degrees C and 700 degrees C, respectively. There are different friction mechanisms at the test temperatures: Ag diffused self-lubricating film at 500 degrees C, as well as Magn.eli and double oxide easy shear phases formed at 700 degrees C, dominate the low friction behavior of the MoVN-Ag films
    corecore