69 research outputs found

    A variety of Euler's conjecture

    Full text link
    We consider a variety of Euler's conjecture, i.e., whether the Diophantine system {n=a1+a2+β‹―+asβˆ’1,a1a2β‹―asβˆ’1(a1+a2+β‹―+asβˆ’1)=bs\begin{cases} n=a_{1}+a_{2}+\cdots+a_{s-1}, a_{1}a_{2}\cdots a_{s-1}(a_{1}+a_{2}+\cdots+a_{s-1})=b^{s} \end{cases} has solutions n,b,ai∈Z+,i=1,2,…,sβˆ’1,sβ‰₯3.n,b,a_i\in\mathbb{Z}^+,i=1,2,\ldots,s-1,s\geq 3. By using the theory of elliptic curves, we prove that it has no solutions n,b,ai∈Z+n,b,a_i\in\mathbb{Z}^+ for s=3s=3, but for s=4s=4 it has infinitely many solutions n,b,ai∈Z+n,b,a_i\in\mathbb{Z}^+ and for sβ‰₯5s\geq 5 there are infinitely many polynomial solutions n,b,ai∈Z[t1,t2,…,tsβˆ’3]n,b,a_i\in\mathbb{Z}[t_1,t_2,\ldots,t_{s-3}] with positive value satisfying this Diophantine system.Comment: 8 page

    Super congruences involving alternating harmonic sums modulo prime powers

    Full text link
    In 2014, Wang and Cai established the following harmonic congruence for any odd prime pp and positive integer rr, \begin{equation*} \sum\limits_{i+j+k=p^{r}\atop{i,j,k\in \mathcal{P}_{p}}}\frac{1}{ijk}\equiv-2p^{r-1}B_{p-3} (\bmod p^{r}), \end{equation*} where Pn\mathcal{P}_{n} denote the set of positive integers which are prime to nn. In this note, we establish a combinational congruence of alternating harmonic sums for any odd prime pp and positive integers rr, \begin{equation*} \sum\limits_{i+j+k=p^{r}\atop{i,j,k\in \mathcal{P}_{p}}}\frac{(-1)^{i}}{ijk} \equiv \frac{1}{2}p^{r-1}B_{p-3} (\bmod p^{r}). \end{equation*} For any odd prime pβ‰₯5p\geq 5 and positive integers rr, we have \begin{align} &4\sum\limits_{i_{1}+i_{2}+i_{3}+i_{4}=2p^{r}\atop{i_{1}, i_{2}, i_{3}, i_{4}\in \mathcal{P}_{p}}}\frac{(-1)^{i_{1}}}{i_{1}i_{2}i_{3}i_{4}}+3\sum\limits_{i_{1}+i_{2}+i_{3}+i_{4}=2p^{r}\atop{i_{1}, i_{2}, i_{3}, i_{4}\in \mathcal{P}_{p}}}\frac{(-1)^{i_{1}+i_{2}}}{i_{1}i_{2}i_{3}i_{4}} \nonumber\\&\equiv\begin{cases} \frac{216}{5}pB_{p-5}\pmod{p^{2}}, if r=1, \\ \frac{36}{5}p^{r}B_{p-5}\pmod{p^{r+1}}, if r>1. \\ \end{cases}\nonumber \end{align} For any odd prime p>5p> 5 and positive integers rr, we have \begin{align} &\sum\limits_{i_{1}+i_{2}+i_{3}+i_{4}+i_{5}=2p^{r}\atop{i_{1}, i_{2}, i_{3}, i_{4}, i_{5}\in \mathcal{P}_{p}}}\frac{(-1)^{i_{1}}}{i_{1}i_{2}i_{3}i_{4}i_{5}}+2\sum\limits_{i_{1}+i_{2}+i_{3}+i_{4}+i_{5}=2p^{r}\atop{i_{1}, i_{2}, i_{3}, i_{4}, i_{5}\in \mathcal{P}_{p}}}\frac{(-1)^{i_{1}+i_{2}}}{i_{1}i_{2}i_{3}i_{4}i_{5}} \nonumber\\&\equiv\begin{cases} 12B_{p-5}\pmod{p}, if r=1,\\ 6p^{r-1}B_{p-5}\pmod{p^{r}}, if r>1. \end{cases}\nonumber \end{align

    Perfect numbers and Fibonacci primes (III)

    Full text link
    In this article, we consider the Diophantine equation Οƒ2(n)βˆ’n2=An+B\sigma_{2}(n)-n^2=An+B with A=P2Β±2A=P^2\pm2. For some BB, we show that except for finitely many computable solutions in the range n≀(∣A∣+∣B∣)3n\leq(|A|+|B|)^{3}, all the solutions are expressible in terms of Lucas sequences. Meanwhile, we obtain some results relating to other linear recurrent sequences.Comment: 11 page

    A congruence involving alternating harmonic sums modulo pΞ±qΞ²p^{\alpha}q^{\beta}

    Full text link
    In 2014, Wang and Cai established the following harmonic congruence for any odd prime pp and positive integer rr, \begin{equation*} \sum\limits_{i+j+k=p^{r}\atop{i,j,k\in \mathcal{P}_{p}}}\frac{1}{ijk}\equiv-2p^{r-1}B_{p-3} ~(\bmod ~ p^{r}), \end{equation*} where Pn\mathcal{P}_{n} denote the set of positive integers which are prime to nn. In this note, we obtain the congruences for distinct odd primes p,Β qp,~q and positive integers Ξ±,Β Ξ²\alpha,~\beta, \begin{equation*} \sum\limits_{i+j+k=p^{\alpha}q^{\beta}\atop{i,j,k\in\mathcal{P}_{pq}\atop{i\equiv j\equiv k\equiv 1\pmod{2}}}}\frac{1}{ijk}\equiv\frac{7}{8}(2-q)(1-\frac{1}{q^{3}})p^{\alpha-1}q^{\beta-1}B_{p-3}\pmod{p^{\alpha}} \end{equation*} and \begin{equation*} \sum\limits_{i+j+k=p^{\alpha}q^{\beta}\atop{i,j,k\in \mathcal{P}_{pq}}}\frac{(-1)^{i}}{ijk} \equiv \frac{1}{2}(q-2)(1-\frac{1}{q^{3}})p^{\alpha-1}q^{\beta-1}B_{p-3}\pmod{p^{\alpha}}. \end{equation*} Finally, we raise a conjecture that for n>1n>1 and odd prime power pα∣∣np^{\alpha}||n, Ξ±β‰₯1\alpha\geq1, \begin{eqnarray} \nonumber \sum\limits_{i+j+k=n\atop{i,j,k\in\mathcal{P}_{n}}}\frac{(-1)^{i}}{ijk} \equiv \prod\limits_{q|n\atop{q\neq p}}(1-\frac{2}{q})(1-\frac{1}{q^{3}})\frac{n}{2p}B_{p-3}\pmod{p^{\alpha}} \end{eqnarray} and \begin{eqnarray} \nonumber \sum\limits_{i+j+k=n\atop{i,j,k\in\mathcal{P}_{n}\atop{i\equiv j\equiv k\equiv 1\pmod{2}}}}\frac{1}{ijk} \equiv \prod\limits_{q|n\atop{q\neq p}}(1-\frac{2}{q})(1-\frac{1}{q^{3}})(-\frac{7n}{8p})B_{p-3}\pmod{p^{\alpha}}. \end{eqnarray

    On the number of representations of n=a+bn=a+b with abab a multiple of a polygonal number

    Full text link
    In this paper, we study the number of representations of a positive integer nn by two positive integers whose product is a multiple of a polygonal number.Comment: 8 page

    On the Lucas Property of Linear Recurrent Sequences

    Full text link
    We say that an arithmetical function S:Nβ†’ZS:\mathbb{N}\rightarrow\mathbb{Z} has Lucas property if for any prime pp, \begin{equation*} S(n)\equiv S(n_{0})S(n_{1})\ldots S(n_{r})\pmod p, \end{equation*} where n=βˆ‘i=0rnipin=\sum_{i=0}^{r}n_{i}p^{i}, with 0≀ni≀pβˆ’1,n,ni∈N0 \leq n_{i} \leq p-1,n,n_{i}\in\mathbb{N}. In this note, we discuss the Lucas property of Fibonacci sequences and Lucas numbers. Meanwhile, we find some other interesting results.Comment: 8 page

    Congruent numbers on the right trapezoid

    Full text link
    We introduce and study a new kind of congruent number problem on the right trapezoid.Comment: 12 pages, 2 figure

    A congruence involving harmonic sums modulo pΞ±qΞ²p^{\alpha}q^{\beta}

    Full text link
    In 2014, Wang and Cai established the following harmonic congruence for any odd prime pp and positive integer rr, \begin{equation*} Z(p^{r})\equiv-2p^{r-1}B_{p-3} ~(\bmod ~ p^{r}), \end{equation*} where Z(n)=βˆ‘i+j+k=ni,j,k∈Pn1ijk Z(n)=\sum\limits_{i+j+k=n\atop{i,j,k\in\mathcal{P}_{n}}}\frac{1}{ijk} and Pn\mathcal{P}_{n} denote the set of positive integers which are prime to nn. In this note, we obtain a congruence for distinct odd primes p,Β qp,~q and positive integers Ξ±,Β Ξ²\alpha,~\beta, \begin{equation*} Z(p^{\alpha}q^{\beta})\equiv 2(2-q)(1-\frac{1}{q^{3}})p^{\alpha-1}q^{\beta-1}B_{p-3}\pmod{p^{\alpha}} \end{equation*} and the necessary and sufficient condition for \begin{equation*} Z(p^{\alpha}q^{\beta})\equiv 0\pmod{p^{\alpha}q^{\beta}}. \end{equation*} Finally, we raise a conjecture that for n>1n>1 and odd prime power pα∣∣np^{\alpha}||n, Ξ±β‰₯1\alpha\geq1, \begin{eqnarray} \nonumber Z(n)\equiv \prod\limits_{q|n\atop{q\neq p}}(1-\frac{2}{q})(1-\frac{1}{q^{3}})(-\frac{2n}{p})B_{p-3}\pmod{p^{\alpha}}. \end{eqnarray

    A New Generalization of Fermat's Last Theorem

    Full text link
    In this paper, we consider some hybrid Diophantine equations of addition and multiplication. We first improve a result on new Hilbert-Waring problem. Then we consider the equation \begin{equation} \begin{cases} A+B=C ABC=D^n \end{cases} \end{equation} where A,B,C,D,n \in\ZZ_{+} and nβ‰₯3n\geq3, which may be regarded as a generalization of Fermat's equation xn+yn=znx^n+y^n=z^n. When gcd⁑(A,B,C)=1\gcd(A,B,C)=1, (1)(1) is equivalent to Fermat's equation, which means it has no positive integer solutions. We discuss several cases for gcd⁑(A,B,C)=pk\gcd(A,B,C)=p^k where pp is an odd prime. In particular, for k=1k=1 we prove that (1)(1) has no nonzero integer solutions when n=3n=3 and we conjecture that it is also true for any prime n>3n>3. Finally, we consider equation (1)(1) in quadratic fields Q(t)\mathbb{Q}(\sqrt{t}) for n=3n=3.Comment: 11 pages, revise

    A congruence involving the quotients of Euler and its applications (III)

    Full text link
    In this paper, we will present several new congruences involving binomial coefficients under integer moduli, which are the continuation of the previous two work by Cai \textit{et al.} (2002, 2007).Comment: 13 page
    • …
    corecore