61 research outputs found
On internal waves propagating across a geostrophic front
Reflection and transmission of normally-incident internal waves propagating across a geostrophic front, like the Kuroshio or Gulf Stream, are investigated using a modified linear internal-wave equation. A transformation from depth to buoyancy coordinates converts the equation to a canonical partial differential equation, sharing properties with conventional internal-wave theory in the absence of a front. The equation type is determined by a parameter Δ, which is a function of horizontal and vertical gradients of buoyancy, the intrinsic frequency of the wave and the effective inertial frequency, which incorporates the horizontal shear of background geostrophic flow. In the northern hemisphere, positive vorticity of the front may produce Δ≤0, i.e., a “forbidden zone”, in which wave solutions are not permitted. Thus, Δ=0 is a virtual boundary that causes wave reflection and refraction, although waves may tunnel through forbidden zones that are weak or narrow. The slope of the surface and bottom boundaries in buoyancy coordinates (or the slope of the virtual boundary if a forbidden zone is present) determine wave reflection and transmission. The reflection coefficient for normally-incident internal waves depends on rotation, isopycnal slope, topographic slope and incident mode number. The scattering rate to high vertical modes allows a bulk estimate of the mixing rate, although the impact of internal-waves driven mixing on the geostrophic front is neglected
Seasonal Variation of Dissolved Oxygen in the Southeast of the Pearl River Estuary
Dissolved oxygen (DO) concentration in estuaries is highly variable at different spatial and temporal scales, which is affected by physical, chemical and biological processes. This study analyzed the spatial–temporal distributions of dissolved oxygen concentration and bottom hypoxia in the southeast of the Pearl River Estuary (PRE) using monthly water quality monitoring and hydrographic data covering the period 2000–2017. The seasonal spatial–temporal variation of DO concentration was studied using various methods, such as rotated empirical orthogonal functions, harmonic analysis, and correlation analysis. The results showed that DO stratification was significant in summer, but it was not distinct in winter, during which DO concentration peaked. DO stratification exhibited a significantly positive correlation with water stratification. In the south and west of Hong Kong (SHK and WHK, respectively), DO concentration fields exhibited distinct seasonal changes in the recent 18 years. In SHK, the main periods of the surface DO variation were 24, 12, and 6 months, whereas the main period was 12 months in WHK. The main period of the bottom DO variation was 12 months in both SHK and WHK. In SHK, the spatial–temporal variations in surface and bottom DO were highly related to the variations of salinity, dissolved inorganic nitrogen (DIN), and active phosphorus, and the variation of surface DO was also connected to the variation of temperature and chlorophyll a. In WHK, the variations in surface and bottom DO were highly related to the variations of salinity and temperature, and the variation of surface DO was also connected to the variation of DIN. The river discharge and wind had a different important influence on the temporal variability of DO in WHK and SHK. These findings suggested that the variations of DO may be controlled by coupled physical and biochemical processes in the southeast of PRE. From 2000 to 2017, bottom hypoxia in the southeast of PRE occurred in the summers of 7 years. SHK appeared to be more vulnerable to hypoxia than WHK
The summer-fall anticyclonic eddy west of Luzon: Structure and evolution in 2012 and interannual variability
The Conductivity-Temperature-Depth (CTD) and acoustic Doppler current profiler (ADCP) measurements along 18 degrees N off the western Luzon in the South China Sea (SCS), collected during a cruise from August 12-14,2012, were used to explore the vertical structure of an anticyclonic eddy (AE) during the observational period. Further, the French Archiving, Validation and Interpretation of Satellite Oceanographic data (AVISO) sea level anomaly (SLA) and corresponding anomalous surface geostrophic velocity were used to study the temporal evolution of the AE. The vertical structure of the AE along 18 degrees N in August 2012 showed a trough located near 117.5 degrees E. The AE extended vertically downward and its distinct feature was identifiable to 200 m depth. Seasonal variations of SIA indicate that the AE lasted for 5 months (June to early November), going through the growth and nearly stationary period from mid-June to late August and then propagating westward along 18 degrees N with varying phase speeds and shapes to the continental slope off the southeastern Hainan Island during late September to November. Furthermore, T-S characteristics suggest that the AE was generated off the western Luzon. Interannual variations of the summer (July-September) SLA presented by Empirical Orthogonal Function analysis, indicates that the local circulation was enhanced by the anomalous anticyclonic eddy along 18 degrees N in the years of 2008, 2010, 2012 and 2013 during the period from1993 to 2014. (c) 2017 Elsevier B.V. All rights reserved
A New Assessment of Mesoscale Eddies in the South China Sea: Surface Features, Three-Dimensional Structures, and Thermohaline Transports
By analyzing 22 years (1993-2015) of daily eddy data, statistics of surface eddy properties were refreshed in the South China Sea. More than 7,000 of historical Argo profiles were collocated into eddy-centered coordinates to reveal the composite mean three-dimensional structure of eddies. The results indicate that eddies of both polarities have long conical shape, with a maximum (minimum) density anomaly of 0.55 kg/m(3) (-0.51 kg/m(3)) at 60 m (90 m) in the composite cyclonic (anticyclonic) eddy. Temperature and salinity anomalies also peak at eddy cores, with values of -1.5 degrees C and 0.15 psu in the cyclonic eddy and 1.4 degrees C and -0.16 psu in the anticyclonic eddy. The temperature and density anomalies extend vertically to 400-500 m, while the salinity anomalies are apparent only in the upper 150 m. The temperature anomalies contribute about 90% of the density anomalies. Mixed layer depths in cyclonic eddies are on average 15 m shallower than those in anticyclonic eddies. The rotation of the composite cyclonic (anticyclonic) eddy generates meridional heat transport of 1.4 x 10(12) W (-3.1 x 10(12) W) and salt transport of -4.0 x 10(4) kg/s (5.6 x 10(4) kg/s). More than 90% of the heat and salt transports are concentrated in the upper 300 and 100 m, respectively. Compared to the meridional transports, the westward propagation of eddies results in zonal heat and salt transports on the same orders of magnitudes. The westward propagation of eddies also generates a basin-scale westward water transport of 1.4 Sv, equivalent to about 30% of the annual-mean Luzon Strait transport
Cases Study of Nonlinear Interaction Between Near-Inertial Waves Induced by Typhoon and Diurnal Tides Near the Xisha Islands
Nonlinear interaction between near-inertial waves (NIWs) and diurnal tides (DTs) after nine typhoons near the Xisha Islands of the northwestern South China Sea (SCS) were investigated using three-year in situ mooring observation data. It was found that a harmonic wave (f+D-1, hereafter referred to as fD(1) wave), with a frequency equal to the sum of frequencies of NIWs and DTs (hereafter referred to as f and D-1, respectively), was generated via nonlinear interaction between typhoon-induced NIWs and DTs after each typhoon. The fD(1) wave mainly concentrates in the subsurface layer, and is mainly induced by the first component of the vertical nonlinear momentum term, the product of the vertical velocity of DT and vertical shear of near-inertial current (hereafter referred to as Component 1), in which the vertical shear of the near-inertial current greatly affects the strength of the fD(1) current. The larger the Component 1, the stronger the fD(1) currents. The background preexisting mesoscale anticyclonic eddy near the mooring site may also enhance the vertical velocity of DT and thus Component 1, which subsequently facilitates the nonlinear interaction-induced energy transfer to the fD(1) wave and enhances the fD(1) currents after the passage of a typhoon
Estimating Four-Dimensional Internal Wave Spectrum in the Northern South China Sea
Internal waves can transfer energy from large-scale to microscale processes; however, the spectra of these waves remain poorly known. A method that combines modal harmonic decomposition and maximum-likelihood method is proposed in this study to estimate four-dimensional internal wave spectrum using limited mooring observations. Using this method, a four-dimensional internal wave spectrum was obtained for the first time based on the mooring measurements collected during the South China Sea (SCS) Internal Wave Experiment in July 2014. The spectrum was then validated by comparing with the spectrum based on Fourier analysis and with the modified Garrett-Munk internal wave spectrum, respectively. The power of the internal wave spectrum decreased obviously with increasing frequency and wavenumber, with a falloff rate of omega(-2) beyond tidal frequencies, and with falloff rates of kh-2 and kz-2.5 for horizontal and vertical wavenumbers, respectively. In addition, at a fixed frequency and vertical wavenumber, the propagation direction and phase speed of internal waves can be obtained through the four-dimensional spectrum. In summary, we verified the feasibility of estimating four-dimensional internal wave spectrum using limited mooring observations in this study, and the method we proposed should be applicable to other regions where such mooring observations are available
A case study of a phytoplankton bloom triggered by a tropical cyclone and cyclonic eddies.
Strong tropical cyclone (TC) Ockhi occurred in the southeastern Arabian Sea (AS) in 2017. Ockhi greatly changed the oceanic conditions and induced large variation in chlorophyll-a (Chl-a). The dynamic mechanisms of the long-term phytoplankton bloom after the passage of the TC were investigated in this study. Prominent surface ocean responses, e.g., decreasing temperature and salinity, were identified from Argo data by comparing the pre- and post-conditions of the TC. A phytoplankton bloom was observed in southeastern AS after the passage of TC Ockhi within the area of (11°N-14°N, 67°E-70°E) and lasted for seven days. Interestingly, there were two weaker cyclonic eddies, with an average vorticity of less than 0.14 s-1, on the TC trajectory from November 28 to December 2. As Ockhi approached, strong vertical mixing occurred on December 3, increasing the eddy vorticity to 0.26 s-1. After the passage of Ockhi, both eddies, with a two-day oscillation period, were substantially enhanced. Especially from December 11 to 16, the vorticity above 70 m was as high as 0.2 s-1 in the thermocline. Because of the high photosynthetically available radiation (PAR) and low precipitation, the enhanced cyclonic eddies induced upwelling for the entire thermocline for over ten days and uplifted nitrates into the mixed layer. This study offers new insights on the influence of eddies in regulating the impacts of typhoons on Chl-a, and the results can help evaluate typhoon-induced biological responses in the future
- …