43,567 research outputs found
Exact Solutions to Sourceless Charged Massive Scalar Field Equation on Kerr-Newman Background
The separated radial part of a sourceless massive complex scalar field
equation on the Kerr-Newman black hole background is shown to be a generalized
spin-weighted spheroidal wave equation of imaginary number order. While the
separated angular part is an ordinary spheroidal wave equation. General exact
solutions in integral forms and in power series expansion as well as several
special solutions with physical interest are given for the radial equation in
the non-extreme case. In the extreme case, power series solution to the radial
equation is briefly studied. Recurrence relations between coefficients in power
series expansion of general solutions and connection between the radial
equation are discussed in both cases.Comment: 22 Pages, in LaTex, no figure, to appear in J. Math. Phy
Gravitational collapse of magnetized clouds II. The role of Ohmic dissipation
We formulate the problem of magnetic field dissipation during the accretion
phase of low-mass star formation, and we carry out the first step of an
iterative solution procedure by assuming that the gas is in free-fall along
radial field lines. This so-called ``kinematic approximation'' ignores the back
reaction of the Lorentz force on the accretion flow. In quasi steady-state, and
assuming the resistivity coefficient to be spatially uniform, the problem is
analytically soluble in terms of Legendre's polynomials and confluent
hypergeometric functions. The dissipation of the magnetic field occurs inside a
region of radius inversely proportional to the mass of the central star (the
``Ohm radius''), where the magnetic field becomes asymptotically straight and
uniform. In our solution, the magnetic flux problem of star formation is
avoided because the magnetic flux dragged in the accreting protostar is always
zero. Our results imply that the effective resistivity of the infalling gas
must be higher by several orders of magnitude than the microscopic electric
resistivity, to avoid conflict with measurements of paleomagnetism in
meteorites and with the observed luminosity of regions of low-mass star
formation.Comment: 20 pages, 4 figures, The Astrophysical Journal, in pres
Massive Complex Scalar Field in a Kerr-Sen Black Hole Background: Exact Solution of Wave Equation and Hawking Radiation
The separated radial part of a massive complex scalar wave equation in the
Kerr-Sen geometry is shown to satisfy the generalized spheroidal wave equation
which is, in fact, a confluent Heun equation up to a multiplier. The Hawking
evaporation of scalar particles in the Kerr-Sen black hole background is
investigated by the Damour-Ruffini-Sannan's method. It is shown that quantum
thermal effect of the Kerr-Sen black hole has the same characteras that of the
Kerr-Newman black hole.Comment: Revtex, 5 pages, no figure, submitted to Phys. Rev.
Black Holes in Gravity with Conformal Anomaly and Logarithmic Term in Black Hole Entropy
We present a class of exact analytic and static, spherically symmetric black
hole solutions in the semi-classical Einstein equations with Weyl anomaly. The
solutions have two branches, one is asymptotically flat and the other
asymptotically de Sitter. We study thermodynamic properties of the black hole
solutions and find that there exists a logarithmic correction to the well-known
Bekenstein-Hawking area entropy. The logarithmic term might come from non-local
terms in the effective action of gravity theories. The appearance of the
logarithmic term in the gravity side is quite important in the sense that with
this term one is able to compare black hole entropy up to the subleading order,
in the gravity side and in the microscopic statistical interpretation side.Comment: Revtex, 10 pages. v2: minor changes and to appear in JHE
Transition from quintessence to phantom phase in quintom model
Assuming the Hubble parameter is a continuous and differentiable function of
comoving time, we investigate necessary conditions for quintessence to phantom
phase transition in quintom model. For power-law and exponential potential
examples, we study the behavior of dynamical dark energy fields and Hubble
parameter near the transition time, and show that the phantom-divide-line w=-1
is crossed in these models.Comment: LaTeX, 19 pages, four figures, some minor changes in Introduction,
two figures added and the references updated, accepted for publication in
Phys. Rev.
A novel multi-objective evolutionary algorithm based on space partitioning
To design an e ective multi-objective optimization evolutionary algorithms (MOEA), we need to address the following issues: 1) the sensitivity to the shape of true Pareto front (PF) on decomposition-based MOEAs; 2) the loss of diversity due to paying so much attention to the convergence on domination-based MOEAs; 3) the curse of dimensionality for many-objective optimization problems on grid-based MOEAs. This paper proposes an MOEA based on space partitioning (MOEA-SP) to address the above issues. In MOEA-SP, subspaces, partitioned by a k-dimensional tree (kd-tree), are sorted according to a bi-indicator criterion de ned in this paper. Subspace-oriented and Max-Min selection methods are introduced to increase selection pressure and maintain diversity, respectively. Experimental studies show that MOEA-SP outperforms several compared algorithms on a set of benchmarks
High-Fidelity Archeointensity Results for the Late Neolithic Period From Central China
Archeomagnetism focuses on exploring high-resolution variations of the geomagnetic field over hundreds to thousands of years. In this study, we carried out a comprehensive study of chronology, absolute and relative paleointensity on a late Neolithic site in central China. Ages of the samples are constrained to be ~3,500–3,000 BCE, a period when available paleointensity data are sparse. We present a total of 64 high-fidelity absolute paleointensities, demonstrating the field varied quickly from ~55 to ~90 ZAm2 between ~3,500–3,000 BCE. Our results record a new archeomagnetic jerk around 3,300 BCE, which is probably non-dipolar origin. The new results provide robust constraints on global geomagnetic models. We calculated a revised Chinese archeointensity reference curve for future application. The variations of absolute and relative paleointensity versus depth show good consistency, reinforcing the reliability of our results. This new attempt of combining absolute and relative paleointenstiy provides a useful tool for future archeomagnetic research
Breathing oscillations of a trapped impurity in a Bose gas
Motivated by a recent experiment [J. Catani et al., arXiv:1106.0828v1
preprint, 2011], we study breathing oscillations in the width of a harmonically
trapped impurity interacting with a separately trapped Bose gas. We provide an
intuitive physical picture of such dynamics at zero temperature, using a
time-dependent variational approach. In the Gross-Pitaevskii regime we obtain
breathing oscillations whose amplitudes are suppressed by self trapping, due to
interactions with the Bose gas. Introducing phonons in the Bose gas leads to
the damping of breathing oscillations and non-Markovian dynamics of the width
of the impurity, the degree of which can be engineered through controllable
parameters. Our results reproduce the main features of the impurity dynamics
observed by Catani et al. despite experimental thermal effects, and are
supported by simulations of the system in the Gross-Pitaevskii regime.
Moreover, we predict novel effects at lower temperatures due to self-trapping
and the inhomogeneity of the trapped Bose gas.Comment: 7 pages, 3 figure
- …