2,036 research outputs found

    Adaptive variance function estimation in heteroscedastic nonparametric regression

    Get PDF
    We consider a wavelet thresholding approach to adaptive variance function estimation in heteroscedastic nonparametric regression. A data-driven estimator is constructed by applying wavelet thresholding to the squared first-order differences of the observations. We show that the variance function estimator is nearly optimally adaptive to the smoothness of both the mean and variance functions. The estimator is shown to achieve the optimal adaptive rate of convergence under the pointwise squared error simultaneously over a range of smoothness classes. The estimator is also adaptively within a logarithmic factor of the minimax risk under the global mean integrated squared error over a collection of spatially inhomogeneous function classes. Numerical implementation and simulation results are also discussed.Comment: Published in at http://dx.doi.org/10.1214/07-AOS509 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    New Bounds for Restricted Isometry Constants

    Get PDF
    In this paper we show that if the restricted isometry constant δk\delta_k of the compressed sensing matrix satisfies δk<0.307, \delta_k < 0.307, then kk-sparse signals are guaranteed to be recovered exactly via 1\ell_1 minimization when no noise is present and kk-sparse signals can be estimated stably in the noisy case. It is also shown that the bound cannot be substantively improved. An explicitly example is constructed in which δk=k12k1<0.5\delta_{k}=\frac{k-1}{2k-1} < 0.5, but it is impossible to recover certain kk-sparse signals

    Effects of Neutron-Proton Short-Range Correlation on the Equation of State of Dense Neutron-Rich Nucleonic Matter

    Full text link
    The strongly isospin-dependent tensor force leads to short-range correlations (SRC) between neutron-proton (deuteron-like) pairs much stronger than those between proton-proton and neutron-neutron pairs. As a result of the short-range correlations, the single-nucleon momentum distribution develops a high-momentum tail above the Fermi surface. Because of the strongly isospin-dependent short-range correlations, in neutron-rich matter a higher fraction of protons will be depleted from its Fermi sea and populate above the Fermi surface compared to neutrons. This isospin-dependent nucleon momentum distribution may have effects on: (1) nucleon spectroscopic factors of rare isotopes, (2) the equation of state especially the density dependence of nuclear symmetry energy, (3) the coexistence of a proton-skin in momentum space and a neutron-skin in coordinate space (i.e., protons move much faster than neutrons near the surface of heavy nuclei). In this talk, we discuss these features and their possible experimental manifestations. As an example, SRC effects on the nuclear symmetry energy are discussed in detail using a modified Gogny-Hartree-Fock (GHF) energy density functional (EDF) encapsulating the SRC-induced high momentum tail (HMT) in the single-nucleon momentum distribution

    Effect of mean on variance function estimation in nonparametric regression

    Get PDF
    Variance function estimation in nonparametric regression is considered and the minimax rate of convergence is derived. We are particularly interested in the effect of the unknown mean on the estimation of the variance function. Our results indicate that, contrary to the common practice, it is not desirable to base the estimator of the variance function on the residuals from an optimal estimator of the mean when the mean function is not smooth. Instead it is more desirable to use estimators of the mean with minimal bias. On the other hand, when the mean function is very smooth, our numerical results show that the residual-based method performs better, but not substantial better than the first-order-difference-based estimator. In addition our asymptotic results also correct the optimal rate claimed in Hall and Carroll [J. Roy. Statist. Soc. Ser. B 51 (1989) 3--14].Comment: Published in at http://dx.doi.org/10.1214/009053607000000901 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Robust MMSE Precoding Strategy for Multiuser MIMO Relay Systems with Switched Relaying and Side Information

    No full text
    In this work, we propose a minimum mean squared error (MMSE) robust base station (BS) precoding strategy based on switched relaying (SR) processing and limited transmission of side information for interference suppression in the downlink of multiuser multiple-input multiple-output (MIMO) relay systems. The BS and the MIMO relay station (RS) are both equipped with a codebook of interleaving matrices. For a given channel state information (CSI) the selection function at the BS chooses the optimum interleaving matrix from the codebook based on two optimization criteria to design the robust precoder. Prior to the payload transmission the BS sends the index corresponding to the selected interleaving matrix to the RS, where the best interleaving matrix is selected to build the optimum relay processing matrix. The entries of the codebook are randomly generated unitary matrices. Simulation results show that the performance of the proposed techniques is significantly better than prior art in the case of imperfect CSI.
    corecore