581 research outputs found
Single-layer behavior and slow carrier density dynamic of twisted graphene bilayer
We report scanning tunneling microscopy (STM) and spectroscopy (STS) of
twisted graphene bilayer on SiC substrate. For twist angle ~ 4.5o the Dirac
point ED is located about 0.40 eV below the Fermi level EF due to the electron
doping at the graphene/SiC interface. We observed an unexpected result that the
local Dirac point around a nanoscaled defect shifts towards the Fermi energy
during the STS measurements (with a time scale about 100 seconds). This
behavior was attributed to the decoupling between the twisted graphene and the
substrate during the measurements, which lowers the carrier density of graphene
simultaneously
Cellulose Acetate Reverse Osmosis Membranes for Desalination: A Short Review
Freshwater scarcity is a critical challenge that human society has to face in the 21st century. Desalination of seawater by reverse osmosis (RO) membranes was regarded as the most promising technology to overcome the challenge given that plenty of potential fresh water resources in oceans. However, the requirements for high desalination efficiency in terms of permeation flux and rejection rate become the bottle-neck which needs to be broken down by developing novel RO membranes with new structure and composition. Cellulose acetate RO membranes exhibited long durability, chlorine resistance, and outstanding desalination efficiency that are worthy of being recalled to address the current shortcomings brought by polyamide RO membranes. In terms of performance enhancement, it is also important to use new ideas and to develop new strategies to modify cellulose acetate RO membranes in response to those complex challenges. Therefore, we focused on the state of the art cellulose acetate RO membranes and discussed the strategies on membrane structural manipulation adjusted by either phase separation or additives, which offered anti-fouling, anti-bacterial, anti-chlorine, durability, and thermo-mechanical properties to the modified membranes associated with the desalination performance, i.e., permeation flux and rejection rate. The relationship between membrane structure and desalination efficiency was investigated and established to guide the development of cellulose acetate RO membranes for desalination.Â
Bis(2-methÂoxy-6-{[2-(methylÂammonio)ethÂyl]iminoÂmethÂyl}phenolato)thioÂcyanatoÂzinc(II) thioÂcyanate hemihydrate
The title mononuclear zinc(II) complex, [Zn(C11H16N2O2)2(NCS)]NCS·0.5H2O, consists of a complex cation, a thioÂcyanate anion, and half of a water molÂecule. The ZnII atom in the cation is five-coordinated by two imine N and two phenolate O atoms from two bidentate Schiff base ligands, and by one N atom of a thioÂcyanate ligand, forming a distorted trigonal-bipyramidal geometry. The ammonio H atoms are involved in hydrogen bonding with the ligand O atoms and the solvent water molecules (site occupation factor 0.5), which partially determines the conformation of the ligands
Electronic Structures of Graphene Layers on Metal Foil: Effect of Point Defects
Here we report a facile method to generate a high density of point defects in
graphene on metal foil and show how the point defects affect the electronic
structures of graphene layers. Our scanning tunneling microscopy (STM)
measurements, complemented by first principle calculations, reveal that the
point defects result in both the intervalley and intravalley scattering of
graphene. The Fermi velocity is reduced in the vicinity area of the defect due
to the enhanced scattering. Additionally, our analysis further points out that
periodic point defects can tailor the electronic properties of graphene by
introducing a significant bandgap, which opens an avenue towards all-graphene
electronics.Comment: 4 figure
Strain Induced One-Dimensional Landau-Level Quantization in Corrugated Graphene
Theoretical research has predicted that ripples of graphene generates
effective gauge field on its low energy electronic structure and could lead to
zero-energy flat bands, which are the analog of Landau levels in real magnetic
fields. Here we demonstrate, using a combination of scanning tunneling
microscopy and tight-binding approximation, that the zero-energy Landau levels
with vanishing Fermi velocities will form when the effective pseudomagnetic
flux per ripple is larger than the flux quantum. Our analysis indicates that
the effective gauge field of the ripples results in zero-energy flat bands in
one direction but not in another. The Fermi velocities in the perpendicular
direction of the ripples are not renormalized at all. The condition to generate
the ripples is also discussed according to classical thin-film elasticity
theory.Comment: 4 figures, Phys. Rev.
The role of endoscopic ultrasound-guided fine-needle aspiration/biopsy in the diagnosis of mediastinal lesions
ObjectiveEndoscopic ultrasound-guided fine-needle aspiration/biopsy (EUS-FNA/FNB) is an accurate technique for sampling the pancreas and mediastinum. The aim of this study was to determine the value of EUS-FNA/FNB in the diagnosis of mediastinal lesions.MethodsData from 107 patients who underwent EUS-FNA/FNB for mediastinal lesions were evaluated.ResultsThe sensitivity, specificity, positive predictive value, and negative predictive value of EUS-FNA/FNB for mediastinal lesions were 92.00%, 100%, 100%, and 85%, respectively. The sensitivity, specificity, positive predictive value, and negative predictive value of EUS-FNA for malignant mediastinal lesions were 92.00%, 100%, 100%, and 86.00%, respectively. The sensitivity, specificity, positive predictive value, and negative predictive value of EUS-FNB for malignant mediastinal lesions were 92.00%, 100%, 100%, and 82.00%, respectively. Except for the discomfort caused by conventional gastroscopy, none of the patients had any complications, such as damage to surrounding large blood vessels or nerves.ConclusionEUS-FNA/FNB is an effective tool for diagnosing unknown mediastinal lesions, without any obvious complications
AquaÂ(2,2′-bipyrimidine-κ2 N,N′)(succinÂato-κ2 O 1,O 4)copper(II) dihydrate
In the crystal structure of the title compound, [Cu(C4H4O4)(C8H6N4)(H2O)]·2H2O, the CuII atom is chelated by a 2,2′-bipyrimidine (bpm) ligand and a succinate anion in the basal plane; a water molÂecule in the apical position completes the slightly distorted square-pyramidal coordination geometry. Another carboxylÂate O atom from an adjacent complex is located in the opposite apical direction, with a Cu⋯O distance of 2.706 (3) Å, and is not considered as a bridging atom. Extensive O—H⋯O and O—H⋯N hydrogen bonding is present in the crystal structure
- …