213 research outputs found

    Front motion for phase transitions in systems with memory

    Full text link
    We consider the Allen-Cahn equations with memory (a partial integro-differential convolution equation). The prototype kernels are exponentially decreasing functions of time and they reduce the integrodifferential equation to a hyperbolic one, the damped Klein-Gordon equation. By means of a formal asymptotic analysis we show that to the leading order and under suitable assumptions on the kernels, the integro-differential equation behave like a hyperbolic partial differential equation obtained by considering prototype kernels: the evolution of fronts is governed by the extended, damped Born-Infeld equation. We also apply our method to a system of partial integro-differential equations which generalize the classical phase field equations with a non-conserved order parameter and describe the process of phase transitions where memory effects are present

    Numerical studies of differential equations related to theoretical financial markets

    Get PDF
    AbstractNumerical computations are performed on a model which has been proposed to describe the characteristic and psychological aspects of financial markets in a pure setting. Overreactions, fluctuations, and convergence to realistic values are observed in these calculations. By varying parameters related to either emotional or rational motivations, one can obtain the spectrum of patterns which range from efficient to chaotic markets

    Phase Field Model for Dynamics of Sweeping Interface

    Full text link
    Motivated by the drying pattern experiment by Yamazaki and Mizuguchi[J. Phys. Soc. Jpn. {\bf 69} (2000) 2387], we propose the dynamics of sweeping interface, in which material distributed over a region is swept by a moving interface. A model based on a phase field is constructed and results of numerical simulations are presented for one and two dimensions. Relevance of the present model to the drying experiment is discussed.Comment: 4 pages, 7 figure

    Universal Dynamics of Phase-Field Models for Dendritic Growth

    Full text link
    We compare time-dependent solutions of different phase-field models for dendritic solidification in two dimensions, including a thermodynamically consistent model and several ad hoc models. The results are identical when the phase-field equations are operating in their appropriate sharp interface limit. The long time steady state results are all in agreement with solvability theory. No computational advantage accrues from using a thermodynamically consistent phase-field model.Comment: 4 pages, 3 postscript figures, in latex, (revtex

    Efficient Computation of Dendritic Microstructures using Adaptive Mesh Refinement

    Full text link
    We study dendritic microstructure evolution using an adaptive grid, finite element method applied to a phase-field model. The computational complexity of our algorithm, per unit time, scales linearly with system size, rather than the quadratic variation given by standard uniform mesh schemes. Time-dependent calculations in two dimensions are in good agreement with the predictions of solvability theory, and can be extended to three dimensions and small undercoolingsComment: typo in a parameter of Fig. 1; 4 pages, 4 postscript figures, in LateX, (revtex

    Phase-Field Formulation for Quantitative Modeling of Alloy Solidification

    Full text link
    A phase-field formulation is introduced to simulate quantitatively microstructural pattern formation in alloys. The thin-interface limit of this formulation yields a much less stringent restriction on the choice of interface thickness than previous formulations and permits to eliminate non-equilibrium effects at the interface. Dendrite growth simulations with vanishing solid diffusivity show that both the interface evolution and the solute profile in the solid are well resolved

    Crossover Scaling in Dendritic Evolution at Low Undercooling

    Full text link
    We examine scaling in two-dimensional simulations of dendritic growth at low undercooling, as well as in three-dimensional pivalic acid dendrites grown on NASA's USMP-4 Isothermal Dendritic Growth Experiment. We report new results on self-similar evolution in both the experiments and simulations. We find that the time dependent scaling of our low undercooling simulations displays a cross-over scaling from a regime different than that characterizing Laplacian growth to steady-state growth

    Kink Arrays and Solitary Structures in Optically Biased Phase Transition

    Full text link
    An interphase boundary may be immobilized due to nonlinear diffractional interactions in a feedback optical device. This effect reminds of the Turing mechanism, with the optical field playing the role of a diffusive inhibitor. Two examples of pattern formation are considered in detail: arrays of kinks in 1d, and solitary spots in 2d. In both cases, a large number of equilibrium solutions is possible due to the oscillatory character of diffractional interaction.Comment: RevTeX 13 pages, 3 PS-figure
    corecore