576 research outputs found

    DYNAMICS OF THE SELIC INTEREST RATES-TARGET IN BRAZIL

    Get PDF
    The present work analyzes the discrete dynamic of the SELIC interest rates-target defined in the meetings of the Brazilian Monetary Policy Council (COPOM). The probit model methodology was applied in order to study the probability of Central Bank increase or decrease SELIC-target interest rate. We found that the inclusion of a fiscal (primary fiscal surplus/GDP) and the lagged output gap variables must be considered important ones to COPOM's decision making processes.

    Large Graph Analysis in the GMine System

    Full text link
    Current applications have produced graphs on the order of hundreds of thousands of nodes and millions of edges. To take advantage of such graphs, one must be able to find patterns, outliers and communities. These tasks are better performed in an interactive environment, where human expertise can guide the process. For large graphs, though, there are some challenges: the excessive processing requirements are prohibitive, and drawing hundred-thousand nodes results in cluttered images hard to comprehend. To cope with these problems, we propose an innovative framework suited for any kind of tree-like graph visual design. GMine integrates (a) a representation for graphs organized as hierarchies of partitions - the concepts of SuperGraph and Graph-Tree; and (b) a graph summarization methodology - CEPS. Our graph representation deals with the problem of tracing the connection aspects of a graph hierarchy with sub linear complexity, allowing one to grasp the neighborhood of a single node or of a group of nodes in a single click. As a proof of concept, the visual environment of GMine is instantiated as a system in which large graphs can be investigated globally and locally

    Techniques for effective and efficient fire detection from social media images

    Get PDF
    Social media could provide valuable information to support decision making in crisis management, such as in accidents, explosions and fires. However, much of the data from social media are images, which are uploaded in a rate that makes it impossible for human beings to analyze them. Despite the many works on image analysis, there are no fire detection studies on social media. To fill this gap, we propose the use and evaluation of a broad set of content-based image retrieval and classification techniques for fire detection. Our main contributions are: (i) the development of the Fast-Fire Detection method (FFDnR), which combines feature extractor and evaluation functions to support instance-based learning, (ii) the construction of an annotated set of images with ground-truth depicting fire occurrences -- the FlickrFire dataset, and (iii) the evaluation of 36 efficient image descriptors for fire detection. Using real data from Flickr, our results showed that FFDnR was able to achieve a precision for fire detection comparable to that of human annotators. Therefore, our work shall provide a solid basis for further developments on monitoring images from social media.Comment: 12 pages, Proceedings of the International Conference on Enterprise Information Systems. Specifically: Marcos Bedo, Gustavo Blanco, Willian Oliveira, Mirela Cazzolato, Alceu Costa, Jose Rodrigues, Agma Traina, Caetano Traina, 2015, Techniques for effective and efficient fire detection from social media images, ICEIS, 34-4

    Complex Network Tools to Understand the Behavior of Criminality in Urban Areas

    Full text link
    Complex networks are nowadays employed in several applications. Modeling urban street networks is one of them, and in particular to analyze criminal aspects of a city. Several research groups have focused on such application, but until now, there is a lack of a well-defined methodology for employing complex networks in a whole crime analysis process, i.e. from data preparation to a deep analysis of criminal communities. Furthermore, the "toolset" available for those works is not complete enough, also lacking techniques to maintain up-to-date, complete crime datasets and proper assessment measures. In this sense, we propose a threefold methodology for employing complex networks in the detection of highly criminal areas within a city. Our methodology comprises three tasks: (i) Mapping of Urban Crimes; (ii) Criminal Community Identification; and (iii) Crime Analysis. Moreover, it provides a proper set of assessment measures for analyzing intrinsic criminality of communities, especially when considering different crime types. We show our methodology by applying it to a real crime dataset from the city of San Francisco - CA, USA. The results confirm its effectiveness to identify and analyze high criminality areas within a city. Hence, our contributions provide a basis for further developments on complex networks applied to crime analysis.Comment: 7 pages, 2 figures, 14th International Conference on Information Technology : New Generation

    Characterizing Vaccination Movements on YouTube in the United States and Brazil

    Full text link
    In the context of COVID-19 pandemic, social networks such as Twitter and YouTube stand out as important sources of information. YouTube, as the largest and most engaging online media consumption platform, has a large influence in the spread of information and misinformation, which makes it important to study how it deals with the problems that arise from disinformation, as well as how its users interact with different types of content. Considering that United States (USA) and Brazil (BR) are two countries with the highest COVID-19 death tolls, we asked the following question: What are the nuances of vaccination campaigns in the two countries? With that in mind, we engage in a comparative analysis of pro and anti-vaccine movements on YouTube. We also investigate the role of YouTube in countering online vaccine misinformation in USA and BR. For this means, we monitored the removal of vaccine related content on the platform and also applied various techniques to analyze the differences in discourse and engagement in pro and anti-vaccine "comment sections". We found that American anti-vaccine content tend to lead to considerably more toxic and negative discussion than their pro-vaccine counterparts while also leading to 18% higher user-user engagement, while Brazilian anti-vaccine content was significantly less engaging. We also found that pro-vaccine and anti-vaccine discourses are considerably different as the former is associated with conspiracy theories (e.g. ccp), misinformation and alternative medicine (e.g. hydroxychloroquine), while the latter is associated with protective measures. Finally, it was observed that YouTube content removals are still insufficient, with only approximately 16% of the anti-vaccine content being removed by the end of the studied period, with the USA registering the highest percentage of removed anti-vaccine content(34%) and BR registering the lowest(9.8%).Comment: Accepted at ACM HT 2022, 15 pages, 7 figure
    • …
    corecore