49 research outputs found
Preliminary Failure Modes and Effects Analysis of the US DCLL Test Blanket Module
This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a small tritium-breeding test blanket module design for the International Thermonuclear Experimental Reactor. The FMEA was quantified with “generic” component failure rate data, and the failure events are binned into postulated initiating event families and frequency categories for safety assessment. An appendix to this report contains repair time data to support an occupational radiation exposure assessment for test blanket module maintenance
Recommended from our members
Compressed Gas Safety for Experimental Fusion Facilities
Experimental fusion facilities present a variety of hazards to the operators and staff. There are unique or specialized hazards, including magnetic fields, cryogens, radio frequency emissions, and vacuum reservoirs. There are also more general industrial hazards, such as a wide variety of electrical power, pressurized air, and cooling water systems in use, there are crane and hoist loads, working at height, and handling compressed gas cylinders. This paper outlines the projectile hazard assoicated with compressed gas cylinders and mthods of treatment to provide for compressed gas safety. This information should be of interest to personnel at both magnetic and inertial fusion experiments
Recommended from our members
Comparison of Tritium Component Failure Rate Data
Published failure rate values from the US Tritium Systems Test Assembly, the Japanese Tritium Process Laboratory, the German Tritium Laboratory Karlsruhe, and the Joint European Torus Active Gas Handling System have been compared. This comparison is on a limited set of components, but there is a good variety of data sets in the comparison. The data compared reasonably well. The most reasonable failure rate values are recommended for use on next generation tritium handling system components, such as those in the tritium plant systems for the International Thermonuclear Experimental Reactor and the tritium fuel systems of inertial fusion facilities, such as the US National Ignition Facility. These data and the comparison results are also shared with the International Energy Agency cooperative task on fusion component failure rate data
Recommended from our members
Gallium Safety in the Laboratory
A university laboratory experiment for the US Department of Energy magnetic fusion research program required a simulant for liquid lithium. The simulant choices were narrowed to liquid gallium and galinstan (Ga-In-Sn) alloy. Safety information on liquid gallium and galinstan were compiled, and the choice was made to use galinstan. A laboratory safety walkthrough was performed in the fall of 2002 to support the galinstan experiment. The experiment has been operating successfully since early 2002
Preliminary Failure Modes and Effects Analysis of the US Massive Gas Injection Disruption Mitigation System Design
This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a candidate design for the ITER Disruption Mitigation System. This candidate is the Massive Gas Injection System that provides machine protection in a plasma disruption event. The FMEA was quantified with “generic” component failure rate data as well as some data calculated from operating facilities, and the failure events were ranked for their criticality to system operation
Recommended from our members
Preliminary Failure Modes and Effects Analysis of the US DCLL Test Blanket Module
This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a small tritium-breeding test blanket module design for the International Thermonuclear Experimental Reactor. The FMEA was quantified with “generic” component failure rate data, and the failure events are binned into postulated initiating event families and frequency categories for safety assessment. An appendix to this report contains repair time data to support an occupational radiation exposure assessment for test blanket module maintenance
Recommended from our members
The Worker Exposure Failure Modes and Effects Analysis
This paper documents the activities of the US-Japan exchange in the area of personnel safety at magnetic and laser fusion experiments. A near-miss event with a visiting scientist to the US in 1992 was the impetus for forming the Joint Working Group on Fusion Safety. This exchange has been under way for over ten years and has provided many safety insights for both US and Japanese facility personnel at national institutes and at universities. The background and activities of the Joint Working Group are described, including the facilities that have been visited for safety walkthroughs, the participants from both countries, and the main safety issues examined during visits. Based on these visits, some operational safety ideas to enhance experiment safety are given. The near-term future plans of the Safety Monitor Joint Working Group are also discussed
Recommended from our members
Hydrogen and Gaseous Fuel Safety and Toxicity
Non-traditional motor fuels are receiving increased attention and use. This paper examines the safety of three alternative gaseous fuels plus gasoline and the advantages and disadvantages of each. The gaseous fuels are hydrogen, methane (natural gas), and propane. Qualitatively, the overall risks of the four fuels should be close. Gasoline is the most toxic. For small leaks, hydrogen has the highest ignition probability and the gaseous fuels have the highest risk of a burning jet or cloud
Reliability Estimates for Power Supplies
Failure rates for large power supplies at a fusion facility are critical knowledge needed to estimate availability of the facility or to set priorties for repairs and spare components. A study of the "failure to operate on demand" and "failure to continue to operate" failure rates has been performed for the large power supplies at DIII-D, which provide power to the magnet coils, the neutral beam injectors, the electron cyclotron heating systems, and the fast wave systems. When one of the power supplies fails to operate, the research program has to be either temporarily changed or halted. If one of the power supplies for the toroidal or ohmic heating coils fails, the operations have to be suspended or the research is continued at de-rated parameters until a repair is completed. If one of the power supplies used in the auxiliary plasma heating systems fails the research is often temporarily changed until a repair is completed. The power supplies are operated remotely and repairs are only performed when the power supplies are off line, so that failure of a power supply does not cause any risk to personnel. The DIII-D Trouble Report database was used to determine the number of power supply faults (over 1,700 reports), and tokamak annual operations data supplied the number of shots, operating times, and power supply usage for the DIII-D operating campaigns between mid-1987 and 2004. Where possible, these power supply failure rates from DIII-D will be compared to similar work that has been performed for the Joint European Torus equipment. These independent data sets support validation of the fusion-specific failure rate values
Recommended from our members
Activities of the US-Japan Safety Monitor Joint Working Group
This paper documents the activities of the US-Japan exchange in the area of personnel safety at magnetic and laser fusion experiments. A near-miss event with a visiting scientist to the US in 1992 was the impetus for forming the Joint Working Group on Fusion Safety. This exchnge has been under way for over ten years and has provided many safety insights for both US and Japanese facility personnel at national institutes and at universities. The background and activities of the Joint Working Group are described, including the facilities that have been visited for safety walkthroughs, the participants from both countries, and the main safety issues examined during visits. Based on these visits, some operational safety ideas to enhance experiment safety are given. The near-term future plans of the Safety Monitor Joint Working group are also discussed