109 research outputs found
Magneto-Infrared Spectroscopic Study of Ultrathin BiTe Single Crystals
Ultrathin BiTe single crystals laid on Scotch tape are
investigated by Fourier transform infrared spectroscopy at K and in a
magnetic field up to T. The magneto-transmittance spectra of the Bi%
Te/tape composite are analyzed as a two-layer system and the optical
conductivity of BiTe at different magnetic fields are extracted. We
find that magnetic field modifies the optical conductivity in the following
ways: (1) Field-induced transfer of the optical weight from the lower frequency
regime (cm) to the higher frequency regime (cm) due
to the redistribution of charge carriers across the Fermi surface. (2) Evolving
of a Fano-resonance-like spectral feature from an anti-resonance to a resonance
with increasing magnetic field. Such behavior can be attributed to the
electron-phonon interactions between the optical phonon mode and
the continuum of electronic transitions. (3) Cyclotron resonance resulting from
the inter-valence band Landau level transitions, which can be described by the
electrodynamics of massive Dirac holes
Interaction-induced shift of the cyclotron resonance of graphene using infrared spectroscopy
We report a study of the cyclotron resonance (CR) transitions to and from the
unusual Landau level (LL) in monolayer graphene. Unexpectedly, we find
the CR transition energy exhibits large (up to 10%) and non-monotonic shifts as
a function of the LL filling factor, with the energy being largest at
half-filling of the level. The magnitude of these shifts, and their
magnetic field dependence, suggests that an interaction-enhanced energy gap
opens in the level at high magnetic fields. Such interaction effects
normally have limited impact on the CR due to Kohn's theorem [W. Kohn, Phys.
Rev. {\bf 123}, 1242 (1961)], which does not apply in graphene as a consequence
of the underlying linear band structure.Comment: 4 pages, 4 figures. Version 2, edited for publication. Includes a
number of edits for clarity; also added a paragraph contrasting our work w/
previous CR expts. in 2D Si and GaA
Measurement of graphite tight-binding parameters using high field magneto-reflectance
frared reflectance spectroscopy at 4K in fields up to 31T. Both
Schr\"odinger-like (K-point) and Dirac-like (H-point) Landau level transitions
have been observed, and their magnetic field dispersion are analyzed by a
newly-derived limiting case of the Slonczewski-Weiss-McClure model. The values
of the band parameters are evaluated without using sophisticated conductivity
peak lineshape analysis. In this work, several less-explored band parameters
are determined from the experimental results and they are known to result in
electron-hole asymmetry and the opening of an energy gap between the electron
and hole bands in multilayer and bilayer graphene systems
Recommended from our members
LIGA microsystems aging : evaluation and mitigation.
The deployment of LIGA structures in DP applications requires a thorough understanding of potential long term physical and chemical changes that may occur during service. While these components are generally fabricated from simple metallic systems such as copper, nickel and nickel alloys, the electroplating process used to form them creates microstructural features which differ from those found in conventional (e.g. ingot metallurgy) processing of such materials. Physical changes in non-equilibrium microstructures may occur due to long term exposure to temperatures sufficient to permit atomic and vacancy mobility. Chemical changes, particularly at the surfaces of LIGA parts, may occur in the presence of gaseous chemical species (e.g. water vapor, HE off-gassing compounds) and contact with other metallic structures. In this study, we have characterized the baseline microstructure of several nickel-based materials that are used to fabricate LIGA structures. Solute content and distribution was found to have a major effect on the electroplated microstructures. Microstructural features were correlated to measurements of hardness and tensile strength. Dormancy testing was conducted on one of the baseline compositions, nickel-sulfamate. Groups of specimens were exposed to controlled thermal cycles; subsequent examinations compared properties of 'aged' specimens to the baseline conditions. Results of our testing indicate that exposure to ambient temperatures (-54 C to 71 C) do not result in microstructural changes that might be expected to significantly effect mechanical performance. Additionally, no localized changes in surface appearance were found as a result of contact between electroplated parts
Reversing non-local transport through a superconductor by electromagnetic excitations
Superconductors connected to normal metallic electrodes at the nanoscale
provide a potential source of non-locally entangled electron pairs. Such states
would arise from Cooper pairs splitting into two electrons with opposite spins
tunnelling into different leads. In an actual system the detection of these
processes is hindered by the elastic transmission of individual electrons
between the leads, yielding an opposite contribution to the non-local
conductance. Here we show that electromagnetic excitations on the
superconductor can play an important role in altering the balance between these
two processes, leading to a dominance of one upon the other depending on the
spatial symmetry of these excitations. These findings allow to understand some
intriguing recent experimental results and open the possibility to control
non-local transport through a superconductor by an appropriate design of the
experimental geometry.Comment: 6 pages, 3 figure
Multicomponent fractional quantum Hall effect in graphene
We report observation of the fractional quantum Hall effect (FQHE) in high
mobility multi-terminal graphene devices, fabricated on a single crystal boron
nitride substrate. We observe an unexpected hierarchy in the emergent FQHE
states that may be explained by strongly interacting composite Fermions with
full SU(4) symmetric underlying degrees of freedom. The FQHE gaps are measured
from temperature dependent transport to be up 10 times larger than in any other
semiconductor system. The remarkable strength and unusual hierarcy of the FQHE
described here provides a unique opportunity to probe correlated behavior in
the presence of expanded quantum degrees of freedom.Comment: 5 pages, 3 figure
- …