8 research outputs found

    Determination of Biotransformation Products of Platinum Drugs in Rat and Human Urine

    Get PDF
    Cisplatin is an extremely effective cancer chemotherapeutic agent, but its use is often accompanied by toxicity. Second generation drugs such as carboplatin are becoming more widely used because of reduced toxicity. Since biotransformation products have been implicated in the toxic responses, we have begun to investigate the reactions of cisplatin and carboplatin with potential biological ligands. Reaction products were characterized using HPLC with inductively coupled plasma - mass spectrometry (HPLC-ICP-MS), 1H and 13C NMR and fast atom bombardment - mass spectrometry (FAB-MS). Three Pt-creatinine complexes, cis-[Pt(NH3)2Cl(Creat)]+, cis-[Pt(NH3)2(H2O)(Creat)]2+ and cis-[Pt(NH3)2(Creat)2]2+, were synthesized and the platinum was shown to coordinate to the ring nitrogen, N(3). Human urine samples from patients on cisplatin chemotherapy were shown to contain cisplatin, its hydrolysis product and biotransformation products containing Pt-creatinine, Pt-urea and Pt-uric acid complexes. Urine from carboplatin patients shows fewer biotransformation products. Studies with control and diabetic (protected against cisplatin toxicity) rats showed systematic differences in the biotransformation products formed on administration of cisplatin

    Quantification of renal uric acid synthesis in the rat

    No full text

    Trimethoprim, creatinine and creatinine-based equations

    Full text link
    Co-trimoxazole is a frequently prescribed antibiotic worldwide. It is composed of both trimethoprim and sulfamethoxazol (Sfx) and is used in the treatment and prophylaxis of urinary tract and Pneumocystis jirovecii infections. The Sfx component appears to be nephrotoxic at high doses or doses inappropriately adjusted for glomerular filtration rate (GFR). The trimethoprim component, even at recommended doses, inhibits tubular creatinine secretion, leading to a rapid but ultimately reversible increase in serum creatinine independent of any changes in GFR. This translates into a falsely low estimated GFR when creatinine-based equations are used. This review focuses on evidence of the differential effects of trimethoprim and Sfx on serum creatinine concentrations and GFR and their relevance to clinical practice, with particular attention to kidney transplantation
    corecore