3 research outputs found

    Reducción de ruido de la imagen PET mediante análisis multiresolución

    Get PDF
    La imagen obtenida mediante Tomografía por Emisión de Positrones (PET por sus siglas en inglés) juega un papel fundamental en el diagnóstico, estadificación (Delgado-Bolton et al 2003) y evaluación de la respuesta terapéutica. También ha demostrado su utilidad conduciendo las terapias de tratamiento, tanto asistiendo en el proceso de contorneo de volúmenes de irradiación durante la planificación radioterápica, como en la identificación de tumores resistentes a las terapias y, con el advenimiento de la medicina personalizada, a través de la evaluación de la texturas dela misma.Sin embargo su manejo presenta algunas dificultades debido a la baja relación señal ruido y a que presenta bordes emborronados si se compara con imágenes de otras modalidades como la tomografía computerizada o la imagen por resonancia magnética. Por lo tanto, resulta necesario incorporar procedimientos de reducción de ruido previos, que produzcan una mejora en su valoración cualitativa y cuantitativa..

    Recommendations of the Spanish Societies of Radiation Oncology (SEOR), Nuclear Medicine & Molecular Imaging (SEMNiM), and Medical Physics (SEFM) on F-FDG PET-CT for radiotherapy treatment planning

    Get PDF
    Positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG) is a valuable tool for diagnosing and staging malignant lesions. The fusion of PET and computed tomography (CT) yields images that contain both metabolic and morphological information, which, taken together, have improved the diagnostic precision of PET in oncology. The main imaging modality for planning radiotherapy treatment is CT. However, PET-CT is an emerging modality for use in planning treatments because it allows for more accurate treatment volume definition. The use of PET-CT for treatment planning is highly complex, and protocols and standards for its use are still being developed. It seems probable that PET-CT will eventually replace current CT-based planning methods, but this will require a full understanding of the relevant technical aspects of PET-CT planning. The aim of the present document is to review these technical aspects and to provide recommendations for clinical use of this imaging modality in the radiotherapy planning process

    Prognostic <sup>18</sup>F-FDG Radiomic Features in Advanced High-Grade Serous Ovarian Cancer

    No full text
    High-grade serous ovarian cancer (HGSOC) is an aggressive disease with different clinical outcomes and poor prognosis. This could be due to tumor heterogeneity. The 18F-FDG PET radiomic parameters permit addressing tumor heterogeneity. Nevertheless, this has been not well studied in ovarian cancer. The aim of our work was to assess the prognostic value of pretreatment 18F-FDG PET radiomic features in patients with HGSOC. A review of 36 patients diagnosed with advanced HGSOC between 2016 and 2020 in our center was performed. Radiomic features were obtained from pretreatment 18F-FDGPET. Disease-free survival (DFS) and overall survival (OS) were calculated. Optimal cutoff values with receiver operating characteristic curve/median values were used. A correlation between radiomic features and DFS/OS was made. The mean DFS was 19.6 months and OS was 37.1 months. Total Lesion Glycolysis (TLG), GLSZM_ Zone Size Non-Uniformity (GLSZM_ZSNU), and GLRLM_Run Length Non-Uniformity (GLRLM_RLNU) were significantly associated with DFS. The survival-curves analysis showed a significant difference of DSF in patients with GLRLM_RLNU > 7388.3 versus patients with lower values (19.7 months vs. 31.7 months, p = 0.035), maintaining signification in the multivariate analysis (p = 0.048). Moreover, Intensity-based Kurtosis was associated with OS (p = 0.027). Pretreatment 18F-FDG PET radiomic features GLRLM_RLNU, GLSZM_ZSNU, and Kurtosis may have prognostic value in patients with advanced HGSOC
    corecore