7 research outputs found

    Evaluation of Hormonal Contraception Effects on Strength and Recovery Across the Hormone Cycle

    Get PDF
    Few investigations have evaluated the effects of hormonal contraception on exercise performance. The biphasic response of endogenous hormones in eumenorrheic (EUM) females is altered with the delivery of exogenous hormones, with oral contraceptives (OC) and intrauterine devices (IUD) most commonly used. Hormonal alterations may have undesirable consequences on muscle strength and power performance, fatigability, and recovery. The purpose of the study was to evaluate the effects of OC and IUD use, compared to a EUM cycle, on maximal strength, power, fatigability, and recovery between menstrual cycle (MC) phases. Sixty healthy, active women who were monophasic OC users (n=21), had a hormonal-IUD (H-IUD; n=20), or had regular naturally occurring menstrual cycles or were using a non-hormonal IUD (EUM; n=19) were evaluated in the in the follicular phase/placebo pill (FP) or in the luteal phase/active pill (LP). Strength was assessed from upper and lower body one repetition max (1RM) and peak force from isometric dynamometry. Power was assessed from counter movement jump and reactive strength index. Peak power (PP), average power (AP), time to PP, and fatigue index were measured with a repeated sprint ability test (RSA). Blood lactate, vessel diameter, and blood flow were measured prior to and immediately post-RSA. Leg press 1RM was significantly different across the MC between groups (p=0.027), with higher leg press 1RM in the LP for the OC group (mean difference[MD: ∆LP-FP]±standard error [SE]: ∆7.3±4.5 kg; p=0.045) compared to the IUD group (∆-8.8±4.6 kg; p=0.045). The results showed no significant changes across the MC for other study outcomes (p>0.05). Despite no significance, the H-IUD group (Δ320.3±260.3 W) and EUM group (Δ24.0±13.3 W) demonstrated greater changes in AP and PP, respectively, in the LP while the OC exhibited greater AP in the FP (Δ-248.2±254.0 W). All groups demonstrated greater blood flow in the FP (OC:Δ-133.4±10.3 mL/min; H-IUD:Δ-128.6±10.6 mL/min; EUM:Δ-137.3±10.8 mL/min) after exercise. Collectively, OC and H-IUD users have similar performance and recovery across the MC, suggesting that exercise training does not need to be modified for phase or group. It appears that OC and H-IUD users can be equally included in research with EUM women.Doctor of Philosoph

    A Randomized Controlled Trial of Changes in Fluid Distribution across Menstrual Phases with Creatine Supplementation

    Get PDF
    This study examined the effects of creatine (Cr) loading on body mass (BM) and fluid markers of total body water (TBW), extra-cellular fluid (ECF), and intra-cellular fluid (ICF) across the menstrual cycle (MC). Thirty moderately active females, either naturally-menstruating (NM) or using hormonal contraceptives (HC), were randomized to Cr (Cr; 4 × 5 g/day of creatine monohydrate for 5 days; n = 15) or a non-caloric placebo (PL; n = 15) using a double-blind, placebo-controlled design, with a menstrual phase crossover. BM, TBW, ECF, and ICF were measured at pre- and post-supplementation in randomized order of follicular phase (FP; NM: MC days 0–8, HC: inactive pill days) or luteal phase (LP; NM: ≤15 days from next projected cycle start date, HC: active pill days) using bioelectrical impedance spectroscopy. Acute hydration status and salivary estrogen were used as covariates. Change in BM was not different between groups across MC ([PL-Cr] Δ 0.40 ± 0.50 kg; p = 0.427) or between MC phase across groups ([FP-LP] Δ 0.31 ± 0.48 kg; p = 0.528). TBW (p = 0.802), ECF (p = 0.373), and ICF (p = 0.795) were not different between supplement groups at pre-supplementation/FP time points. There were no significant differences between the NM and HC subjects at any time point, for any outcome (p > 0.05). Following LP supplementation, significant changes were observed in TBW (Cr: Δ 0.83 ± 0.38 L, PL: Δ −0.62 ± 0.38 L; p = 0.021), ECF (Cr: Δ 0.46 ± 0.15 L, PL: Δ −0.19 ± 0.15 L; p = 0.013), and ICF (Cr: Δ 0.74 ± 0.23 L, PL: Δ −0.02 ± 0.23 L; p = 0.041). These data demonstrate an increase in all fluid compartments in the LP following Cr loading, without observed alterations in body weight for females

    The Effects of Creatine Monohydrate Loading on Exercise Recovery in Active Women throughout the Menstrual Cycle

    Get PDF
    Creatine supplementation improves anaerobic performance and recovery; however, to date, these outcomes have not been well explored in females. This study evaluated the effect of creatine monohydrate loading on exercise recovery, measured by heart rate variability (HRV) and repeated sprint performance, in women across the menstrual cycle. In this randomized, double-blind, cross-over study, 39 women (mean ± standard deviation: age: 24.6 ± 5.9 years, height: 172.5 ± 42.3 cm, weight: 65.1 ± 8.1 kg, BF: 27.4 ± 5.8%) were randomized to a creatine monohydrate (n = 19; 20 g per day in 4 × 5 g doses) or non-caloric PL group (n = 20). HRV was measured at rest and after participants completed a repeated sprint cycling test (10 × 6 s maximal sprints). Measurements were conducted before and after supplementation in the follicular/low hormone and luteal/high hormone phases. Creatine monohydrate supplementation did not influence HRV values, as no significant differences were seen in HRV values at rest or postexercise. For repeated sprint outcomes, there was a significant phase × supplement interaction (p = 0.048) for fatigue index, with the greatest improvement seen in high hormone in the creatine monohydrate group (−5.8 ± 19.0%) compared to changes in the PL group (0.1 ± 8.1%). Sprint performance and recovery were reduced by the high hormone for both groups. Though not statistically significant, the data suggests that creatine monohydrate could help counteract performance decrements caused by the high hormone. This data can help inform creatine monohydrate loading strategies for females, demonstrating potential benefits in the high hormone phase

    The effects of L-Citrulline and Glutathione on Endurance performance in young adult trained males

    No full text
    Background Citrulline may amplify the effects of L-arginine and nitric oxide concentration, which may augment vasodilation and blood flow, thereby enhancing aerobic exercise performance. The purpose of this randomized, double-blind, placebo-controlled crossover study was to investigate effects of L-citrulline + Glutathione on aerobic exercise performance and blood flow in well-trained men. Methods Twenty-five males (Mean ± SD; Age: 22.2 ± 2.4 yrs; Height: 177.0 ± 4.8 cm; Weight: 75.3 ± 6.9 kg) were randomly assigned to the L-citrulline + Glutathione (Setria Performance Blend: SPB; L-citrulline [2 g] + glutathione [200 mg], 6 capsules) or placebo (PL; 3.1 g cellulose, 6 capsules) group. Participants performed a maximal oxygen consumption treadmill test to determine peak velocity (PV) and returned after eight days of ingesting either PL or SPB. Three timed treadmill runs to exhaustion (TTE) were performed at 90%, 100%, and 110% PV. Brachial artery blood flow and vessel diameter were assessed using ultrasound at 1-hr prior to exercise (1hrPrEX), after each exercise bout, immediately post-exercise (immediate PEX), and 30 minutes post exercise (30minPEX) at visits 2 and 4. Blood analytes were assessed via venous blood draws at visit 1, visit 3, and 1hrPEX, immediate PEX, and 30minPEX at visits 2 and 4. After a 14-day washout, participants repeated the same procedures, ingesting the opposite treatment. Separate repeated measures ANOVAs were performed for TTE, vessel diameter, blood flow, and blood analytes. Results Blood flow was significantly augmented 30minPEX (p = 0.04) with SPB in comparison with PL. L-citrulline and L-arginine plasma concentrations were significantly elevated immediately PEX (p = 0.001) and 30-minPEX (p = 0.001) following SPB in comparison to PL. Conclusion Acute ingestion of SPB after eight days may enhance blood flow, L-citrulline, and L-arginine plasma concentrations after high-intensity exercise, which may enhance performance. Clinical Trial Registration [https://clinicaltrials.gov/ct2/show/nct04090138], identifier [NCT04090138]

    A Randomized Controlled Trial of Changes in Fluid Distribution across Menstrual Phases with Creatine Supplementation

    Get PDF
    This study examined the effects of creatine (Cr) loading on body mass (BM) and fluid markers of total body water (TBW), extra-cellular fluid (ECF), and intra-cellular fluid (ICF) across the menstrual cycle (MC). Thirty moderately active females, either naturally-menstruating (NM) or using hormonal contraceptives (HC), were randomized to Cr (Cr; 4 × 5 g/day of creatine monohydrate for 5 days; n = 15) or a non-caloric placebo (PL; n = 15) using a double-blind, placebo-controlled design, with a menstrual phase crossover. BM, TBW, ECF, and ICF were measured at pre- and post-supplementation in randomized order of follicular phase (FP; NM: MC days 0–8, HC: inactive pill days) or luteal phase (LP; NM: ≤15 days from next projected cycle start date, HC: active pill days) using bioelectrical impedance spectroscopy. Acute hydration status and salivary estrogen were used as covariates. Change in BM was not different between groups across MC ([PL-Cr] Δ 0.40 ± 0.50 kg; p = 0.427) or between MC phase across groups ([FP-LP] Δ 0.31 ± 0.48 kg; p = 0.528). TBW (p = 0.802), ECF (p = 0.373), and ICF (p = 0.795) were not different between supplement groups at pre-supplementation/FP time points. There were no significant differences between the NM and HC subjects at any time point, for any outcome (p > 0.05). Following LP supplementation, significant changes were observed in TBW (Cr: Δ 0.83 ± 0.38 L, PL: Δ −0.62 ± 0.38 L; p = 0.021), ECF (Cr: Δ 0.46 ± 0.15 L, PL: Δ −0.19 ± 0.15 L; p = 0.013), and ICF (Cr: Δ 0.74 ± 0.23 L, PL: Δ −0.02 ± 0.23 L; p = 0.041). These data demonstrate an increase in all fluid compartments in the LP following Cr loading, without observed alterations in body weight for females

    Collagen peptides supplementation improves function, pain, and physical and mental outcomes in active adults

    No full text
    Introduction Chronic pain affects 19% of adults in the United States, with increasing prevalence in active and aging populations. Pain can limit physical activity and activities of daily living (ADLs), resulting in declined mental and social health. Nutritional interventions for pain currently target inflammation or joint health, but few influence both. Collagen, the most abundant protein in the human body and constituent of the extra cellular matrix, is such a nutraceutical. While there have been reports of reductions in pain with short-term collagen peptide (CP) supplementation, there are no long-term studies specifically in healthy middle-aged active adults. Purpose To determine the effects of daily CP consumption over 3, 6, and 9 months on survey measures of pain, function, and physical and mental health using The Knee Injury & Osteoarthritis Outcomes Score (KOOS) and Veterans Rand 12 (VR-12) in middle-aged active adults. Methods This study was a double-blind randomized control trial with three treatment groups (Placebo, 10 g/d CP, and 20 g/d CP). Results Improvements in ADLs (p = .031, ηp2 = .096) and pain (p = .037, ηp2 = .164) were observed with 10 g/d CP over 6 months, although pain only improved in high frequency exercisers (>180 min/week). Additionally, VR-12 mental component scores (MCS) improved with 10 g/d of CP over 3–9 months (p = .017, ηp2 = .309), while physical component scores (PCS) improved with 20 g/d of CP over 3-9 months, but only in females (p = .013, ηp2= .582). Conclusion These findings suggest 10 to 20 g/d of CP supplementation over 6 to 9 months may improve ADLs, pain, MCS, and PCS in middle-aged active adults

    Validity of a Three-Dimensional Body Scanner: Comparison Against a 4-Compartment Model and Dual Energy X-Ray Absorptiometry

    No full text
    Three-dimensional (3D) body scanner technology for body composition assessment is expanding. The aim of this study was to assess the validity of a 3D body scanner. 194 participants (43% male; Age: 23.525.47 yrs; BMI: 23.983.24 kgm-2) were measured using 3D scanner and a 4-compartment (4C) model utilizing DXA, air displacement plethysmography, and bioelectrical impedance spectroscopy. Dependent t-tests, validity statistics including total error (TE), standard error of the estimate (SEE), constant error, and Bland-Altman analyses were utilized. Compared to 4C, 3D scanner FM [mean difference (MD; 3D- 4C): 2.66 kg3.32 kg] and %BF (MD: 4.13%5.36%) were significantly (pThe accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
    corecore