116 research outputs found

    Correlations Between Life-Detection Techniques and Implications for Sampling Site Selection in Planetary Analog Missions

    Get PDF
    We conducted an analog sampling expedition under simulated mission constraints to areas dominated by basaltic tephra of the Eldfell and Fimmvorouhals lava fields (Iceland). Sites were selected to be homogeneous at a coarse remote sensing resolution (10-100m) in apparent color, morphology, moisture, and grain size, with best-effort realism in numbers of locations and replicates. Three different biomarker assays (counting of nucleic-acid-stained cells via fluorescent microscopy, a luciferin/luciferase assay for adenosine triphosphate, and quantitative polymerase chain reaction (qPCR) to detect DNA associated with bacteria, archaea, and fungi) were characterized at four nested spatial scales (1m, 10m, 100m, and >1km) by using five common metrics for sample site representativeness (sample mean variance, group F tests, pairwise t tests, and the distribution-free rank sum H and u tests). Correlations between all assays were characterized with Spearman's rank test. The bioluminescence assay showed the most variance across the sites, followed by qPCR for bacterial and archaeal DNA; these results could not be considered representative at the finest resolution tested (1m). Cell concentration and fungal DNA also had significant local variation, but they were homogeneous over scales of >1km. These results show that the selection of life detection assays and the number, distribution, and location of sampling sites in a low biomass environment with limited a priori characterization can yield both contrasting and complementary results, and that their interdependence must be given due consideration to maximize science return in future biomarker sampling expeditions. Key Words: AstrobiologyBiodiversityMicrobiologyIcelandPlanetary explorationMars mission simulationBiomarker. Astrobiology 17, 1009-1021

    The Secreted Metalloprotease ADAMTS20 Is Required for Melanoblast Survival

    Get PDF
    ADAMTS20 (A disintegrin-like and metalloprotease domain with thrombospondin type-1 motifs) is a member of a family of secreted metalloproteases that can process a variety of extracellular matrix (ECM) components and secreted molecules. Adamts20 mutations in belted (bt) mice cause white spotting of the dorsal and ventral torso, indicative of defective neural crest (NC)-derived melanoblast development. The expression pattern of Adamts20 in dermal mesenchymal cells adjacent to migrating melanoblasts led us to initially propose that Adamts20 regulated melanoblast migration. However, using a Dct-LacZ transgene to track melanoblast development, we determined that melanoblasts were distributed normally in whole mount E12.5 bt/bt embryos, but were specifically reduced in the trunk of E13.5 bt/bt embryos due to a seven-fold higher rate of apoptosis. The melanoblast defect was exacerbated in newborn skin and embryos from bt/bt animals that were also haploinsufficient for Adamts9, a close homolog of Adamts20, indicating that these metalloproteases functionally overlap in melanoblast development. We identified two potential mechanisms by which Adamts20 may regulate melanoblast survival. First, skin explant cultures demonstrated that Adamts20 was required for melanoblasts to respond to soluble Kit ligand (sKitl). In support of this requirement, bt/bt;Kittm1Alf/+ and bt/bt;KitlSl/+ mice exhibited synergistically increased spotting. Second, ADAMTS20 cleaved the aggregating proteoglycan versican in vitro and was necessary for versican processing in vivo, raising the possibility that versican can participate in melanoblast development. These findings reveal previously unrecognized roles for Adamts proteases in cell survival and in mediating Kit signaling during melanoblast colonization of the skin. Our results have implications not only for understanding mechanisms of NC-derived melanoblast development but also provide insights on novel biological functions of secreted metalloproteases

    What is the value and impact of quality and safety teams? A scoping review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to conduct a scoping review of the literature about the establishment and impact of quality and safety team initiatives in acute care.</p> <p>Methods</p> <p>Studies were identified through electronic searches of Medline, Embase, CINAHL, PsycINFO, ABI Inform, Cochrane databases. Grey literature and bibliographies were also searched. Qualitative or quantitative studies that occurred in acute care, describing how quality and safety teams were established or implemented, the impact of teams, or the barriers and/or facilitators of teams were included. Two reviewers independently extracted data on study design, sample, interventions, and outcomes. Quality assessment of full text articles was done independently by two reviewers. Studies were categorized according to dimensions of quality.</p> <p>Results</p> <p>Of 6,674 articles identified, 99 were included in the study. The heterogeneity of studies and results reported precluded quantitative data analyses. Findings revealed limited information about attributes of successful and unsuccessful team initiatives, barriers and facilitators to team initiatives, unique or combined contribution of selected interventions, or how to effectively establish these teams.</p> <p>Conclusions</p> <p>Not unlike systematic reviews of quality improvement collaboratives, this broad review revealed that while teams reported a number of positive results, there are many methodological issues. This study is unique in utilizing traditional quality assessment and more novel methods of quality assessment and reporting of results (SQUIRE) to appraise studies. Rigorous design, evaluation, and reporting of quality and safety team initiatives are required.</p

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion
    corecore