23 research outputs found

    Genomic profiling identifies common HPV-associated chromosomal alterations in squamous cell carcinomas of cervix and head and neck

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is well known that a persistent infection with high-risk human papillomavirus (hrHPV) is causally involved in the development of squamous cell carcinomas of the uterine cervix (CxSCCs) and a subset of SCCs of the head and neck (HNSCCs). The latter differ from hrHPV-negative HNSCCs at the clinical and molecular level.</p> <p>Methods</p> <p>To determine whether hrHPV-associated SCCs arising from different organs have specific chromosomal alterations in common, we compared genome-wide chromosomal profiles of 10 CxSCCs (all hrHPV-positive) with 12 hrHPV-positive HNSCCs and 30 hrHPV-negative HNSCCs. Potential organ-specific alterations and alterations shared by SCCs in general were investigated as well.</p> <p>Results</p> <p>Unsupervised hierarchical clustering resulted in one mainly hrHPV-positive and one mainly hrHPV-negative cluster. Interestingly, loss at 13q and gain at 20q were frequent in HPV-positive carcinomas of both origins, but uncommon in hrHPV-negative HNSCCs, indicating that these alterations are associated with hrHPV-mediated carcinogenesis. Within the group of hrHPV-positive carcinomas, HNSCCs more frequently showed gains of multiple regions at 8q whereas CxSCCs more often showed loss at 17p. Finally, gains at 3q24-29 and losses at 11q22.3-25 were frequent (>50%) in all sample groups.</p> <p>Conclusion</p> <p>In this study hrHPV-specific, organ-specific, and pan-SCC chromosomal alterations were identified. The existence of hrHPV-specific alterations in SCCs of different anatomical origin, suggests that these alterations are crucial for hrHPV-mediated carcinogenesis.</p

    Effects of eight neuropsychiatric copy number variants on human brain structure

    Get PDF

    Effects of eight neuropsychiatric copy number variants on human brain structure

    Full text link
    peer reviewedMany copy number variants (CNVs) confer risk for the same range of neurodevelopmental symptoms and psychiatric conditions including autism and schizophrenia. Yet, to date neuroimaging studies have typically been carried out one mutation at a time, showing that CNVs have large effects on brain anatomy. Here, we aimed to characterize and quantify the distinct brain morphometry effects and latent dimensions across 8 neuropsychiatric CNVs. We analyzed T1-weighted MRI data from clinically and non-clinically ascertained CNV carriers (deletion/duplication) at the 1q21.1 (n = 39/28), 16p11.2 (n = 87/78), 22q11.2 (n = 75/30), and 15q11.2 (n = 72/76) loci as well as 1296 non-carriers (controls). Case-control contrasts of all examined genomic loci demonstrated effects on brain anatomy, with deletions and duplications showing mirror effects at the global and regional levels. Although CNVs mainly showed distinct brain patterns, principal component analysis (PCA) loaded subsets of CNVs on two latent brain dimensions, which explained 32 and 29% of the variance of the 8 Cohen’s d maps. The cingulate gyrus, insula, supplementary motor cortex, and cerebellum were identified by PCA and multi-view pattern learning as top regions contributing to latent dimension shared across subsets of CNVs. The large proportion of distinct CNV effects on brain morphology may explain the small neuroimaging effect sizes reported in polygenic psychiatric conditions. Nevertheless, latent gene brain morphology dimensions will help subgroup the rapidly expanding landscape of neuropsychiatric variants and dissect the heterogeneity of idiopathic conditions. © 2021, The Author(s)

    Newborn screening for SMA in Southern Belgium

    No full text
    Approval was recently granted for a new treatment for spinal muscular atrophy (SMA). Given that the treatment is effective when administered early and the societal burden of SMA-related disability, the implementation of a newborn screening program is warranted. We describe the stepwise process that led us to launch a newborn screening program for SMA in Southern Belgium. Different political, ethical, and clinical partners were informed about this project and were involved in its governance, as were genetic and screening labs. We developed and validated a newborn screening method to specifically recognize homozygous deletions of exon 7 in the SMN1 gene. Subsequently, a 3-year pilot study has been recently initiated in one Belgian neonatal screening laboratory to cover 17.000 neonates per year. Coverage extension to all of Southern Belgium to screen 55.000 babies each year is underway

    [(S)un (M)ay (A)rise on SMA : the hope of a region without spinal muscular atrophy].

    No full text
    The treatment of spinal muscular atrophy (SMA) has considerably changed over the last 3 years. Several approaches that aim to increase the deficient SMN protein have demonstrated an efficacy that is inversely correlated with disease duration. In this context, newborn screening (NBS) is increasingly considered as the next step in several countries or regions. In 2018, we initiated a pilot study for NBS of SMA in French- and German-speaking Belgium. We aim to evaluate the feasibility, the efficacy, and the cost-effectiveness of such a program. Initially covering the region of Liege, the program was recently extended to the whole Southern Belgium and currently covers about 55.000 newborns per year. On June 1st 2019, 35.000 newborns had been screened and 5 affected babies were identified and referred to neuromuscular centers for early treatment. A full evaluation of the program will take place after three years to consider the inclusion of SMA screening in the publically-funded NBS program in Southern Belgium

    Early Onset Epileptic Encephalopathy: Genetic Analysis and Further Delineation of Genotype-phenotype Correlation

    No full text
    Objective: Early onset epileptic encephalopathy (EOEE)remains an important diagnostic and therapeutic challenge.The objective was to perform genetic analysis in patientswith EOEE and to further delineate the genotype-phenotype correlation in patients with EOEE. Methods: We recruited 15 refractory epileptic patientswith epileptic onset before age 12 months. All patients had metabolic screening, electroencephalogram, magnetic reso-nance imaging and molecular analysis (comparative genomic hybridization, gene sequencing, next generation sequencing and or whole exome sequencing. Results: Dravet syndrome (DS) with SCN1A mutations was found in six patients with refractory epilepsy (RE) andmoderate to severe developmental delay (DD). Two patients diagnosed (KCNT1, SCN) with malignant migrating partialseizure (MMPS) had RE, severe DD, autistic behavior. The latter had movement disorders (video) (choreoathetosis, ballis-mus) with a worse outcome than the patients with DS phe-notype with SCN1A mutations. Severe DD and RE wasfound in patients with SCN8A, SLC13A5, SMC1A, orHCFC1 and ATRX mutations. Patient with SCN2A mutation had severe DD. A better outcome was observed in the patient with CDKL5 mutations in the catalytic domain in compari-son with the patient with a deletion in Xp22.13 including CDKL5. The patient with SMC1A mutations disclosed the Cornelia de Lange syndrome phenotype (Table 1). TRXmutations and deletions in 2q24.3 and Xp22.13. In SLC13A5 and SCN2A mutations, epileptic onset occurred atthe earliest age

    Genetic diagnosis of Duchenne and Becker muscular dystrophy using multiplex ligation-dependent probe amplification in Rwandan patients.

    Full text link
    Duchenne and Becker muscular dystrophies are the most common clinical forms of muscular dystrophies. They are genetically X-linked diseases caused by a mutation in the dystrophin (DMD) gene. A genetic diagnosis was carried out in six Rwandan patients presenting a phenotype of Duchenne and Becker muscular dystrophies and six asymptomatic female carrier relatives using multiplex ligation-dependent probe amplification (MLPA). Our results revealed deletion of the exons 48-51 in one patient, an inherited deletion of the exons 8-21 in two brothers and a de novo deletion of the exons 46-50 in the fourth patient. No copy number variation was found in two patients. Only one female carrier presented exon deletion in the DMD gene. This is the first cohort of genetic analysis in Rwandan patients affected by Duchenne and Becker muscular dystrophies. This report confirmed that MLPA assay can be easily implemented in low-income countries
    corecore