437 research outputs found

    Simple PTAS's for families of graphs excluding a minor

    Full text link
    We show that very simple algorithms based on local search are polynomial-time approximation schemes for Maximum Independent Set, Minimum Vertex Cover and Minimum Dominating Set, when the input graphs have a fixed forbidden minor.Comment: To appear in Discrete Applied Mathematic

    Minimum Cuts in Geometric Intersection Graphs

    Full text link
    Let D\mathcal{D} be a set of nn disks in the plane. The disk graph GDG_\mathcal{D} for D\mathcal{D} is the undirected graph with vertex set D\mathcal{D} in which two disks are joined by an edge if and only if they intersect. The directed transmission graph GDβ†’G^{\rightarrow}_\mathcal{D} for D\mathcal{D} is the directed graph with vertex set D\mathcal{D} in which there is an edge from a disk D1∈DD_1 \in \mathcal{D} to a disk D2∈DD_2 \in \mathcal{D} if and only if D1D_1 contains the center of D2D_2. Given D\mathcal{D} and two non-intersecting disks s,t∈Ds, t \in \mathcal{D}, we show that a minimum ss-tt vertex cut in GDG_\mathcal{D} or in GDβ†’G^{\rightarrow}_\mathcal{D} can be found in O(n3/2polylogn)O(n^{3/2}\text{polylog} n) expected time. To obtain our result, we combine an algorithm for the maximum flow problem in general graphs with dynamic geometric data structures to manipulate the disks. As an application, we consider the barrier resilience problem in a rectangular domain. In this problem, we have a vertical strip SS bounded by two vertical lines, Lβ„“L_\ell and LrL_r, and a collection D\mathcal{D} of disks. Let aa be a point in SS above all disks of D\mathcal{D}, and let bb a point in SS below all disks of D\mathcal{D}. The task is to find a curve from aa to bb that lies in SS and that intersects as few disks of D\mathcal{D} as possible. Using our improved algorithm for minimum cuts in disk graphs, we can solve the barrier resilience problem in O(n3/2polylogn)O(n^{3/2}\text{polylog} n) expected time.Comment: 11 pages, 4 figure

    The Clique Problem in Ray Intersection Graphs

    Full text link
    Ray intersection graphs are intersection graphs of rays, or halflines, in the plane. We show that any planar graph has an even subdivision whose complement is a ray intersection graph. The construction can be done in polynomial time and implies that finding a maximum clique in a segment intersection graph is NP-hard. This solves a 21-year old open problem posed by Kratochv\'il and Ne\v{s}et\v{r}il.Comment: 12 pages, 7 figure
    • …
    corecore