126 research outputs found

    Detection of Organics at Mars: How Wet Chemistry Onboard SAM Helps

    Get PDF
    For the first time in the history of space exploration, a mission of interest to astrobiology could be able to analyze refractory organic compounds in the soil of Mars. Wet chemistry experiment allow organic components to be altered in such a way that improves there detection either by releasing the compounds from sample matricies or by changing the chemical structure to be amenable to analytical conditions. The latter is particular important when polar compounds are present. Sample Analysis at Mars (SAM), on the Curiosity rover of the Mars Science Laboratory mission, has onboard two wet chemistry experiments: derivatization and thermochemolysis. Here we report on the nature of the MTBSTFA derivatization experiment on SAM, the detection of MTBSTFA in initial SAM results, and the implications of this detection

    Bioinformatic analysis of ESTs collected by Sanger and pyrosequencing methods for a keystone forest tree species: oak

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Fagaceae family comprises about 1,000 woody species worldwide. About half belong to the <it>Quercus </it>family. These oaks are often a source of raw material for biomass wood and fiber. Pedunculate and sessile oaks, are among the most important deciduous forest tree species in Europe. Despite their ecological and economical importance, very few genomic resources have yet been generated for these species. Here, we describe the development of an EST catalogue that will support ecosystem genomics studies, where geneticists, ecophysiologists, molecular biologists and ecologists join their efforts for understanding, monitoring and predicting functional genetic diversity.</p> <p>Results</p> <p>We generated 145,827 sequence reads from 20 cDNA libraries using the Sanger method. Unexploitable chromatograms and quality checking lead us to eliminate 19,941 sequences. Finally a total of 125,925 ESTs were retained from 111,361 cDNA clones. Pyrosequencing was also conducted for 14 libraries, generating 1,948,579 reads, from which 370,566 sequences (19.0%) were eliminated, resulting in 1,578,192 sequences. Following clustering and assembly using TGICL pipeline, 1,704,117 EST sequences collapsed into 69,154 tentative contigs and 153,517 singletons, providing 222,671 non-redundant sequences (including alternative transcripts). We also assembled the sequences using MIRA and PartiGene software and compared the three unigene sets. Gene ontology annotation was then assigned to 29,303 unigene elements. Blast search against the SWISS-PROT database revealed putative homologs for 32,810 (14.7%) unigene elements, but more extensive search with Pfam, Refseq_protein, Refseq_RNA and eight gene indices revealed homology for 67.4% of them. The EST catalogue was examined for putative homologs of candidate genes involved in bud phenology, cuticle formation, phenylpropanoids biosynthesis and cell wall formation. Our results suggest a good coverage of genes involved in these traits. Comparative orthologous sequences (COS) with other plant gene models were identified and allow to unravel the oak paleo-history. Simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs) were searched, resulting in 52,834 SSRs and 36,411 SNPs. All of these are available through the Oak Contig Browser <url>http://genotoul-contigbrowser.toulouse.inra.fr:9092/Quercus_robur/index.html</url>.</p> <p>Conclusions</p> <p>This genomic resource provides a unique tool to discover genes of interest, study the oak transcriptome, and develop new markers to investigate functional diversity in natural populations.</p

    Abiotic Input of Fixed Nitrogen by Bolide Impacts to Gale Crater During the Hesperian : Insights From the Mars Science Laboratory

    Get PDF
    We acknowledge the NASA Mars Science Laboratory Program, Centre National d'Études Spatiales, the Universidad Nacional Autónoma de México (PAPIIT IN109416, IN111619, and PAPIME PE103216), and the Consejo Nacional de Ciencia y Tecnología de México (CONACyT 220626) for their support. We thank Fred Calef for constructing Figure 4 and appreciate the interest and support received from John P. Grotzinger and Joy A. Crisp throughout the Curiosity mission. The authors are grateful to the SAM and MSL teams for successful operation of the SAM instrument and the Curiosity rover. The data used in this paper are listed in the supporting information, figures, and references. SAM Data contained in this paper are publicly available through the NASA Planetary Data System at http://pds‐geosciences.wustl.edu/missions/msl/sam.htm. We would like to express gratitude to Pierre‐Yves Meslin from the Research Institute in Astrophysics and Planetology at Toulouse, France, and five anonymous reviewers whose comments/suggestions on earlier drafts helped improve and clarify this manuscript. The authors declare no conflicts of interests.Peer reviewedPublisher PD

    The Search for Organic Compounds of Martian Origin in Gale Crater by the Sample Analysis at Mars (SAM) Instrument on Curiosity

    Get PDF
    One of the key objectives of the Mars Science Laboratory rover and the Sample Analysis at Mars (SAM) instrument suite is to determine the inventory of organic and inorganic volatiles in the atmosphere and surface regolith and rocks to help assess the habitability potential of Gale Crater. The SAM instrument on the Curiosity rover can detect volatile organic compounds thermally evolved from solid samples using a combination of evolved gas analysis (EGA) and gas chromatography mass spectrometry (GCMS) (Mahaffy et al. 2012). The first solid samples analyzed by SAM, a scoop of windblown dust and sand at Rocknest, revealed several chloromethanes and a C4-chlorinated hydrocarbon derived primarily from reactions between a martian oxychlorine phase (e.g. perchlorate) and terrestrial carbon from N-methyl-N-(tertbutyldimethylsilyl)- trifluoroacetamide (MTBSTFA) vapor present in the SAM instrument background (Glavin et al. 2013). After the analyses at Rocknest, Curiosity traveled to Yellowknife Bay and drilled two separate holes in a fluvio-lacustrine sediment (the Sheepbed unit) designated John Klein and Cumberland. Analyses of the drilled materials by both SAM and the CheMin X-Ray Diffraction instrument revealed a mudstone consisting of ~20 wt% smectite clays (Ming et al. 2013; Vaniman et al. 2013), which on Earth are known to aid the concentration and preservation of organic matter. Oxychlorine compounds were also detected in the Sheepbed mudstone during pyrolysis; however, in contrast to Rocknest, much higher levels of chloromethanes were released from the Sheepbed materials, suggesting an additional, possibly martian source of organic carbon (Ming et al. 2013). In addition, elevated abundances of chlorobenzene and a more diverse suite of chlorinated alkanes including dichloropropane and dichlorobutane detected in Cumberland compared to Rocknest suggest that martian or meteoritic organic carbon sources may be preserved in the mudstone (Freissinet et al. 2013). Chloromethane and dichloromethane were also identified after thermal volatilization of the surface soils by the GCMS instruments at the Viking landing sites, although no other chlorinated hydrocarbons were reported (Biemann et al. 1977). Here we focus on the origin of the chlorinated hydrocarbons detected in the Sheepbed mudstone by SAM and the implications for the preservation of organic matter in near-surface materials on Mars

    Characterization of a cinnamoyl-CoA reductase 1 (CCR1) mutant in maize: effects on lignification, fibre development, and global gene expression

    Get PDF
    Cinnamoyl-CoA reductase (CCR), which catalyses the first committed step of the lignin-specific branch of monolignol biosynthesis, has been extensively characterized in dicot species, but few data are available in monocots. By screening a Mu insertional mutant collection in maize, a mutant in the CCR1 gene was isolated named Zmccr1–. In this mutant, CCR1 gene expression is reduced to 31% of the residual wild-type level. Zmccr1– exhibited enhanced digestibility without compromising plant growth and development. Lignin analysis revealed a slight decrease in lignin content and significant changes in lignin structure. p-Hydroxyphenyl units were strongly decreased and the syringyl/guaiacyl ratio was slightly increased. At the cellular level, alterations in lignin deposition were mainly observed in the walls of the sclerenchymatic fibre cells surrounding the vascular bundles. These cell walls showed little to no staining with phloroglucinol. These histochemical changes were accompanied by an increase in sclerenchyma surface area and an alteration in cell shape. In keeping with this cell type-specific phenotype, transcriptomics performed at an early stage of plant development revealed the down-regulation of genes specifically associated with fibre wall formation. To the present authors’ knowledge, this is the first functional characterization of CCR1 in a grass species

    The Search for Nitrates on Mars by the Sample Analysis at Mars (SAM) Instrument

    Get PDF
    Planetary models suggest that nitrogen was abundant in the early Martian atmosphere as N2 but it was lost by sputtering and photochemical loss to space, impact erosion, and chemical oxidation to nitrates. A nitrogen cycle may exist on Mars where nitrates, produced early in Mars' history, may have been later decomposed back into N2 by the current impact flux. Nitrates are a fundamental source of nitrogen for terrestrial microorganisms, and they have evolved metabolic pathways to perform both oxidation and reduction to drive a complete biological nitrogen cycle. Therefore, the characterization of nitrogen in Martian soils is important to assess habitability of the Martian environment, particularly with respect to the presence of nitrates. The only previous mission that was designed to search for soil nitrates was the Phoenix mission but N-containing species were not detected by TEGA or the MECA WCL. Nitrates have been tentatively identified in Nakhla meteorites, and if nitrogen was oxidized on Mars, this has important implications for the habitability potential of Mars. Here we report the results from the Sample Analysis at Mars (SAM) instrument suite aboard the Curiosity rover during the first year of surface operations in Gale Crater. Samples from the Rocknest aeolian deposit and sedimentary rocks (John Klein) were heated to approx 835degC under helium flow and the evolved gases were analyzed by MS and GC-MS. Two and possibly three peaks may be associated with the release of m/z 30 at temperatures ranging from 180degC to 500degC. M/z 30 has been tentatively identified as NO; other plausible contributions include CH2O and an isotopologue of CO, 12C18O. NO, CH2O, and CO may be reaction products of reagents (MTBSTFA/DMF) carried from Earth for the wet chemical derivatization experiments with SAM and/or derived from indigenous soil nitrogenated organics. Laboratory analyses indicate that it is also possible that <550degC evolved NO is produced via reaction of HCl with nitrates arising from the decomposition of perchlorates. All sources of m/z 30 whether it be martian or terrestrial will be considered and their implications for Mars will be discussed

    The Sample Analysis at Mars Investigation and Instrument Suite

    Full text link

    Miniaturized gas chromatography for space exploration: A 50 years history

    No full text
    International audienceSince the beginning of the in situ exploration of alien worlds in the solar system, the characterization of the chemical composition in volatile materials and organic molecules is among the top priorities. Indeed, these compounds learn us about the origin and history of these world, their potential for habitability, and somehow the nature of resources they could provide, especially for future inhabited exploration. Among the chemical analytical techniques existing, gas chromatography was preferentially used as it is a robust instrumentation that can be used in many environments. Obviously, as the constraints of spacecraft accommodation require for light and small instruments, gas chromatographs have to meet these constraints and to be miniaturized compared to the laboratory set-up. This article tells the story of gas chromatography for space exploration and give information about its miniaturization

    Chemical composition of Titan's aerosols analogues characterized with a systematic pyrolysis-gas chromatography-mass spectrometry characterization

    No full text
    International audienceThe in situ chemical characterization of Titan's atmosphere was achieved in 2005 with two instruments present onboard the Huygens atmospheric probe : the Aerosol Collector and Pyrolyzer (ACP) devoted to collect and pyrolyse Titan's aerosols ; the Gas Chromatograph-Mass Spectrometer (GCMS) experiment devoted to analyze gases collected in the atmosphere or coming from the aerosols pyrolysis. The GCMS was developed by Hasso Niemann in the filiation of the quadrupole mass spectrometers he built for several former space missions. The main objectives were to : determine the concentration profile of the most abundant chemical species; seek for minor atmospheric organic species not detected with remote observations ; give a first view of the organic aerosols structure; characterize the condensed volatiles present at the surface (e.g. lakes) in case of survival of the probe to the landing impact. Taking into account for the potential complexity of the gaseous samples to be analyzed, it was decided to couple to the MS analyzer a gas chromatograph capable to separate volatile species from light inorganic molecules and noble gases, to organic compounds including aromatics. This was the first GCMS analyzer that worked in an extraterrestrial environment since the Viking missions on Mars. Even if the GCMS coupling mode did not provide any result of interest, it has been demonstrated to be functional during the Huygens descent. But, the direct MS analysis of the atmosphere, and the pyrolysis-MS analysis of aerosols allowed to make great discoveries which are still of primary importance to describe the Titan's lower atmosphere composition. This contribution aims at presenting this instrument that worked in the Titan's atmosphere, and summarizing the most important discoveries it allowed

    Search for organics in extraterrestrial environments by in situ gas chromatography analysis

    No full text
    Many organic molecules are present in interstellar clouds and might have been carried to the early Earth by comets and meteorites during the heavy bombardment phase in the first few hundred million years of the solar system. It has been suggested that extraterrestrial organic material may represent a part of the organic material available for the origin of life. Until samples, brought by future space missions, are available on Earth, in situ measurements are the only way to get unaltered samples for analysis. The analytical technique has to be robust, sensitive and non-specific due to the large scope of target molecules. Currently the only flight qualified technique of analysis of organic molecules in space is gas chromatography (GC). The main objective of this work is to present the capabilities of a GC based subsystem, developed in our laboratory and including sample treatment and capillary column analysis, for the in situ analysis of volatile and refractory organics in atmospheric (Titan) and/or surface or sub-surface samples (Mars, comets)
    corecore