47 research outputs found
Evaluaci贸n de funciones de utilidad de GRASP en la programaci贸n de producci贸n para minimizar la tardanza total ponderada en una m谩quina
This paper considers the total weighted tardiness minimization in a single machineenvironment (1|| wj Tj ) a scheduling problem which has been proved to be NP-Hard. The solution approach uses the Greedy Randomized Adaptive Search Procedure (GRASP) meta-heuristic known for the quality of the solutions it can generate and the selective ability of its utility function during the construction phase. This work proposes and analyses three different utility functions for the problem in question. A statistical study showed significant differences between the mean values obtained from the proposed utility functions. The computational experiments were carried out using problems instances found in the OR-LIBRARY, and the outcome of these experiments were competitive solutions compared to the best known values of the instances involved. This work also shows the ease of developing GRASP methods for solving scheduling problems in a simple spreadsheet software such as MS Excel.Este art铆culo aborda la minimizaci贸n de la tardanza total ponderada en un entorno de producci贸n (1|| wj Tj ) que es conocido en complejidad como de tipo NP-hard. El enfoque de soluci贸n propuesto utiliza la metaheur铆stica Greedy Randomized Adaptive Search Procedure (GRASP), la cual es reconocida por la correlaci贸n existente entre la calidad de las soluciones y la capacidad discriminante de la funci贸n de utilidad empleada en su fase constructiva. Este trabajo propone y analiza tres diferentes funciones de utilidad para este problema en particular. El desempe帽o de estas funciones se evalu贸 mediante un estudio estad铆stico que evidenci贸 diferencias significativas en los valores medios de tardanza total ponderada, explicadas por el factor funci贸n de utilidad. La fase experimental se desarroll贸 usando instancias de la librer铆a OR-LIBRARY y permiti贸 obtener soluciones competitivas en calidad con respecto a los mejores valores conocidos para las instancias de este problema. Este trabajo ilustra la potencialidad de uso de m茅todos GRASP implementados en una hoja de c谩lculo normal para hallar soluciones a problemas de programaci贸n de la producci贸n
Identificaci贸n y programaci贸n de asignaturas a ofrecer en un programa de especializaci贸n
This paper presents an alternative proposal for a solution of an existing problem for specialization programs. At the beginning of each academic period, academic programs have to select and schedule diverse courses. The expected result is a timetable that offers the greatest satisfaction to students and the direction of the program. As a first approach to solve the problem, a mathematical optimization was utilized through a mixed programming model in order to decide which courses to offer.However, this approach was not successful from a practical point of view.
Due to the difficulties encountered from the practical point of view, a combined use of two meta heuristics techniques was proposed. These techniques have been widely recognized by the literature because of its capacities of facing high complexity problems: genetic algorithms and tabu search. The Genetic Algorithms were used to perform the selection process of the courses to be offered during the academic period, while Tabu search was used to define the scheduling of the selected courses. The design of the met heuristics is innovative and the results were presented in a relatively short period of time
for the magnitude of the problem.El presente art铆culo ilustra una propuesta alterna de soluci贸n para el problema de selecci贸n y programaci贸n de asignaturas que se origina en los programas de especializaci贸n al inicio de cada periodo acad茅mico. El resultado que se espera es una programaci贸n de las asignaturas que mayor satisfacci贸n proporcione tanto a los estudiantes como a la direcci贸n del programa. Como primera alternativa de soluci贸n al problema, se emple贸 la optimizaci贸n matem谩tica mediante un modelo de programaci贸n mixta para decidir qu茅 cursos ofrecer, pero este enfoque no result贸 exitoso desde el punto de vista pr谩ctico. Ante las dificultades pr谩cticas encontradas, se propone el uso combinado de dos t茅cnicas metaheur铆sticas de amplio reconocimiento en la literatura por sus capacidades para abordar problemas de alta complejidad: algoritmos gen茅ticos y b煤squeda tab煤. El primero de ellos se utiliza para realizar el proceso de selecci贸n de las asignaturas a ofrecer durante el periodo. La segunda t茅cnica se emple贸 para realizar la programaci贸n de las asignaturas seleccionadas. El dise帽o de las metaheur铆sticas es innovador y se encontraron resultados en un tiempo relativamente corto teniendo en cuenta la magnitud del problema
Insight into ADHD diagnosis with deep learning on Actimetry: Quantitative interpretation of occlusion maps in age and gender subgroups
Producci贸n Cient铆ficaAttention Deficit/Hyperactivity Disorder (ADHD) is a prevalent neurodevelopmental disorder in childhood that often persists into adulthood. Objectively diagnosing ADHD can be challenging due to the reliance on subjective questionnaires in clinical assessment. Fortunately, recent advancements in artificial intelligence (AI) have shown promise in providing objective diagnoses through the analysis of medical images or activity recordings. These AI-based techniques have demonstrated accurate ADHD diagnosis; however, the growing complexity of deep learning models has introduced a lack of interpretability. These models often function as black boxes, unable to offer meaningful insights into the data patterns that characterize ADHD.Agencia Estatal de Investigaci贸n (grants PID2020-115339RB-I00, TED2021-130090B-I00 and TED2021-131536B-I00)EU Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement (101008297)Company ESAOTE Ltd (grant 18IQBM
Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2
The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality
Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study
Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p<0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p<0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised
Redes de petri y algoritmos gen茅ticos para programaci贸n de un sistema de manufactura flexible
Mag铆ster en Ingenier铆a IndustrialMaestr铆
Redes de Petri y algoritmos gen茅ticos, una propuesta para la programaci贸n de sistemas de manufactura flexible
este art铆culo propone el uso conjunto de las redes de Petri y de los algoritmos gen茅ticos como nuevo enfoque para modelar sistemas de manufactura flexible y generar programas de producci贸n activos orientados a la minimizaci贸n de la tardanza ponderada de los trabajos. Se consideraron algunas restricciones propias de este tipo de sistemas de producci贸n, tales como tiempos de alistamiento dependientes de la secuencia de operaciones, estaciones con m谩quinas en paralelo no necesariamente id茅nticas y capacidad de almacenamiento temporal limitado en las estaciones. Las fortalezas de las redes de Petri y de los algoritmos gen茅ticos para modelar sistemas discretos y solucionar problemas combinatorios, respectivamente, son ampliamente reconocidas y permiten considerar su integraci贸n como tema de inter茅s en la programaci贸n de la producci贸n. Se proporcionan resultados computacionales que hacen prever este enfoque como promisorio para futuros trabajos
Redes de Petri y algoritmos gen茅ticos, una propuesta para la programaci贸n de sistemas de manufactura flexible
este art铆culo propone el uso conjunto de las redes de Petri y de los algoritmos gen茅ticos como nuevo enfoque para modelar sistemas de manufactura flexible y generar programas de producci贸n activos orientados a la minimizaci贸n de la tardanza ponderada de los trabajos. Se consideraron algunas restricciones propias de este tipo de sistemas de producci贸n, tales como tiempos de alistamiento dependientes de la secuencia de operaciones, estaciones con m谩quinas en paralelo no necesariamente id茅nticas y capacidad de almacenamiento temporal limitado en las estaciones. Las fortalezas de las redes de Petri y de los algoritmos gen茅ticos para modelar sistemas discretos y solucionar problemas combinatorios, respectivamente, son ampliamente reconocidas y permiten considerar su integraci贸n como tema de inter茅s en la programaci贸n de la producci贸n. Se proporcionan resultados computacionales que hacen prever este enfoque como promisorio para futuros trabajos
Redes de Petri y algoritmos gen茅ticos, una propuesta para la programaci贸n de sistemas de manufactura flexible
este art铆culo propone el uso conjunto de las redes de Petri y de los algoritmos gen茅ticos como nuevo enfoque para modelar sistemas de manufactura flexible y generar programas de producci贸n activos orientados a la minimizaci贸n de la tardanza ponderada de los trabajos. Se consideraron algunas restricciones propias de este tipo de sistemas de producci贸n, tales como tiempos de alistamiento dependientes de la secuencia de operaciones, estaciones con m谩quinas en paralelo no necesariamente id茅nticas y capacidad de almacenamiento temporal limitado en las estaciones. Las fortalezas de las redes de Petri y de los algoritmos gen茅ticos para modelar sistemas discretos y solucionar problemas combinatorios, respectivamente, son ampliamente reconocidas y permiten considerar su integraci贸n como tema de inter茅s en la programaci贸n de la producci贸n. Se proporcionan resultados computacionales que hacen prever este enfoque como promisorio para futuros trabajos