2,464 research outputs found

    Multicomponent synthesis and photophysical study of novel α,β-unsaturated carbonyl depsipeptides and peptoids

    Get PDF
    Multicomponent reactions were performed to develop novel α,β-unsaturated carbonyl depsipeptides and peptoids incorporating various chromophores such as cinnamic, coumarin, and quinolines. Thus, through the Passerini and Ugi multicomponent reactions (P-3CR and U-4CR), we obtained thirteen depsipeptides and peptoids in moderate to high yield following the established protocol and fundamentally varying the electron-rich carboxylic acid as reactants. UV/Vis spectroscopy was utilized to study the photophysical properties of the newly synthesized compounds. Differences between the carbonyl-substituted chromophores cause differences in electron delocalization that can be captured in the spectra. The near UV regions of all the compounds exhibited strong absorption bands. Compounds P2, P5, U2, U5, and U7 displayed absorption bands in the range of 250–350 nm, absorbing radiation in this broad region of the electromagnetic spectrum. A photostability study for U5 showed that its molecular structure does not change after exposure to UV radiation. Fluorescence analysis showed an incipient emission of U5, while U6 showed blue fluorescence under UV radiation. The photophysical properties and electronic structure were also determined by TD-DFT theoretical study

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore