12,098 research outputs found

    Neutrinos and the synthesis of heavy elements: the role of gravity

    Full text link
    The synthesis of heavy elements in the Universe presents several challenges. From one side the astrophysical site is still undetermined and on other hand the input from nuclear physics requires the knowledge of properties of exotic nuclei, some of them perhaps accessible in ion beam facilities. Black hole accretion disks have been proposed as possible r-process sites. Analogously to Supernovae these objects emit huge amounts of neutrinos. We discuss the neutrino emission from black hole accretion disks. In particular we show the influence that the black hole strong gravitational field has on changing the electron fraction relevant to the synthesis of elements.Comment: 5 pages, 5 figures, Invited talk at the 15th International Symposium on Capture Gamma-Ray Spectroscopy and Related Topics (CGS15), to appear in EPJ Web of Conference

    Neutrino Scattering in Heterogeneous Supernova Plasmas

    Get PDF
    Neutrinos in core collapse supernovae are likely trapped by neutrino-nucleus elastic scattering. Using molecular dynamics simulations, we calculate neutrino mean free paths and ion-ion correlation functions for heterogeneous plasmas. Mean free paths are systematically shorter in plasmas containing a mixture of ions compared to a plasma composed of a single ion species. This is because neutrinos can scatter from concentration fluctuations. The dynamical response function of a heterogeneous plasma is found to have an extra peak at low energies describing the diffusion of concentration fluctuations. Our exact molecular dynamics results for the static structure factor reduce to the Debye Huckel approximation, but only in the limit of very low momentum transfers.Comment: 11 pages, 13 figure

    The Gaia Ultra-Cool Dwarf Sample -- II : Structure at the end of the main sequence

    Get PDF
    © 2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society.We identify and investigate known late M, L, and T dwarfs in the Gaia second data release. This sample is being used as a training set in the Gaia data processing chain of the ultracool dwarfs work package. We find 695 objects in the optical spectral range M8–T6 with accurate Gaia coordinates, proper motions, and parallaxes which we combine with published spectral types and photometry from large area optical and infrared sky surveys. We find that 100 objects are in 47 multiple systems, of which 27 systems are published and 20 are new. These will be useful benchmark systems and we discuss the requirements to produce a complete catalogue of multiple systems with an ultracool dwarf component. We examine the magnitudes in the Gaia passbands and find that the G BP magnitudes are unreliable and should not be used for these objects. We examine progressively redder colour–magnitude diagrams and see a notable increase in the main-sequence scatter and a bivariate main sequence for old and young objects. We provide an absolute magnitude – spectral subtype calibration for G and G RP passbands along with linear fits over the range M8–L8 for other passbands.Peer reviewedFinal Published versio
    • …
    corecore