7 research outputs found
ShaneAO: wide science spectrum adaptive optics system for the Lick Observatory
A new high-order adaptive optics system is now being commissioned at the Lick
Observatory Shane 3-meter telescope in California. This system uses a high
return efficiency sodium beacon and a combination of low and high-order
deformable mirrors to achieve diffraction-limited imaging over a wide spectrum
of infrared science wavelengths covering 0.8 to 2.2 microns. We present the
design performance goals and the first on-sky test results. We discuss several
innovations that make this system a pathfinder for next generation AO systems.
These include a unique woofer-tweeter control that provides full dynamic range
correction from tip/tilt to 16 cycles, variable pupil sampling wavefront
sensor, new enhanced silver coatings developed at UC Observatories that improve
science and LGS throughput, and tight mechanical rigidity that enables a
multi-hour diffraction- limited exposure in LGS mode for faint object
spectroscopy science.Comment: 11 pages, 10 figures. Presented at SPIE Astronomical Telescopes +
Instrumentation conference, paper 9148-7
Opto-Mechanical Design of ShaneAO: the Adaptive Optics System for the 3-meter Shane Telescope
A Cassegrain mounted adaptive optics instrument presents unique challenges
for opto-mechanical design. The flexure and temperature tolerances for
stability are tighter than those of seeing limited instruments. This criteria
requires particular attention to material properties and mounting techniques.
This paper addresses the mechanical designs developed to meet the optical
functional requirements. One of the key considerations was to have
gravitational deformations, which vary with telescope orientation, stay within
the optical error budget, or ensure that we can compensate with a steering
mirror by maintaining predictable elastic behavior. Here we look at several
cases where deformation is predicted with finite element analysis and Hertzian
deformation analysis and also tested. Techniques used to address thermal
deformation compensation without the use of low CTE materials will also be
discussed.Comment: 14 pages, 14 figures, 4 tables. Presented at SPIE Astronomical
Telescopes + Instrumentation conference, paper 9148-11
The Keck Cosmic Web Imager: a capable new integral field spectrograph for the W. M. Keck Observatory
The Keck Cosmic Web Imager (KCWI) is a new facility instrument being developed for the W. M. Keck Observatory and funded for construction by the Telescope System Instrumentation Program (TSIP) of the National Science Foundation (NSF). KCWI is a bench-mounted spectrograph for the Keck II right Nasmyth focal station, providing integral field spectroscopy over a seeing-limited field up to 20"x33" in extent. Selectable Volume Phase Holographic (VPH) gratings provide high efficiency and spectral resolution in the range of 1000 to 20000. The dual-beam design of KCWI passed a Preliminary Design Review in summer 2011. The detailed design of the KCWI blue channel (350 to 700 nm) is now nearly complete, with the red channel (530 to 1050 nm) planned for a phased implementation contingent upon additional funding. KCWI builds on the experience of the Caltech team in implementing the Cosmic Web Imager (CWI), in operation since 2009 at Palomar Observatory. KCWI adds considerable flexibility to the CWI design, and will take full advantage of the excellent seeing and dark sky above Mauna Kea with a selectable nod-and-shuffle observing mode. In this paper, models of the expected KCWI sensitivity and background subtraction capability are presented, along with a detailed description of the instrument design. The KCWI team is lead by Caltech (project management, design and implementation) in partnership with the University of California at Santa Cruz (camera optical and mechanical design) and the W. M. Keck Observatory (program oversight and observatory interfaces)