2 research outputs found

    A selective role for receptor activity‐modifying protein in sub‐chronic action of the amylin selective receptor agonist NN1213 compared to salmon calcitonin on body weight and food intake in male mice

    Full text link
    The role of receptor activity-modifying proteins (RAMPs) in modulating the pharmacological effects of an amylin receptor selective agonist (NN1213) or the dual amylin-calcitonin receptor agonist (DACRA), salmon calcitonin (sCT), was tested in three RAMP KO mouse models, RAMP1, RAMP3 and RAMP1/3 KO. Male wild-type (WT) and knockout (KO) littermate mice were fed a 45% high-fat diet for 20 weeks prior to the 3-week treatment period. A decrease in body weight after NN1213 was observed in all WT mice, whereas sCT had no effect. The absence of RAMP1 had no significant effect on NN1213 efficacy, and sCT was still inactive. However, the absence of RAMP3 impeded NN1213 efficacy but improved sCT efficacy. Similar results were observed in RAMP1/3 KO suggesting that the amylin receptor 3 (AMY3 = CTR + RAMP3) is necessary for NN1213's maximal action on body weight and food intake and that the lack of AMY3 allowed sCT to be active. These results suggest that the chronic use of DACRA such as sCT can have unfavourable effect on body weight loss in mice (which differs from the situation in rats), whereas the use of the amylin receptor selective agonist does not. AMY3 seems to play a crucial role in modulating the action of these two compounds, but in opposite directions. The assessment of a long-term effect of amylin and DACRA in different rodent models is necessary to understand potential physiological beneficial and unfavourable effects on weight loss before its transition to clinical trials

    Activity of airway antimicrobial peptides against cystic fibrosis pathogens

    No full text
    Antimicrobial peptides are important players of the innate host defence against invading microorganisms. The aim of this study was to evaluate the activity of airway antimicrobial peptides against the common cystic fibrosis (CF) pathogen Pseudomonas aeruginosa, and to compare it to the emerging multi-drug resistant CF pathogens Achromobacter xylosoxidans and Stenotrophomonas maltophilia. Clinical bacterial isolates from CF patients were used, and the antimicrobial activity of human beta-defensin 2 and 3, LL37 and lysozyme was evaluated using radial diffusion assay and viable counts. The cell surface zeta potential was analysed to estimate the net charge at the bacterial surface. Of the bacterial species included in the study, A. xylosoxidans was the most resistant to antimicrobial peptides, whereas P. aeruginosa was the most susceptible. The net charge of the bacterial surface was significantly more negative for P. aeruginosa compared to A. xylosoxidans, which may in part explain the differences in susceptibility
    corecore