197 research outputs found
Dune plants as a sink for beach litter: The species-specific role and edge effect on litter entrapment by plants
Anthropogenic litter accumulates along coasts worldwide. In addition to the flowing litter load, wind, sea currents, geomorphology and vegetation determine the distribution of litter trapped on the sandy coasts. Although some studies highlighted the role of dune plants in trapping marine litter, little is known about their efficiency as sinks and about the small-scale spatial distribution of litter across the dune area. Here, we explore these gaps by analysing six plant species widespread in Mediterranean coastal habitats, namely Echinophora spinosa, Limbarda crithmoides, Anthemis maritima, Pancratium maritimum, Thinopyrum junceum, and Salsola kali. The present study analyses for the first time the capture of litter by dune vegetation at a multi-species level, considering their morphological structure. Data on plastic accumulation on dune plants were compared with unvegetated control plots located at embryo-dune and foredune belts. We found that dunal plants mainly entrapped macrolitter (> 0.5 cm). Particularly, E. spinosa, L. crithmoides, A. maritima and P. maritimum mostly accumulated litter in the embryo dune while T. junceum and S. kali entrapped more in the foredune area. Moreover, beach litter was mainly blocked at the edge of the plant patches rather than in the core, highlighting the âPlant-edge litter effectâ. As A. maritima and S. kali entrapped respectively more litter in embryo and foredune habitats, these species could be used to monitor and recollect litter. In this light, our findings provide further insight into the role of dune plants in the beach litter dynamics, suppling useful information for beach clean-up actions
Electrophoretic deposition of nanostructured-TiO2/chitosan composite coatings on stainless steel
Novel chitosan composite coatings containing titania nanoparticles (n-TiO2) for biomedical applications were developed by electrophoretic deposition (EPD) from ethanolâwater suspensions. The optimal ethanolâwater ratio was studied in order to avoid bubble formation during the EPD process and to ensure homogeneous coatings. Different n-TiO2 contents (0.5â10 g Lâ1) were studied for a fixed chitosan concentration (0.5 g Lâ1) and the properties of the electrophoretic coatings obtained were characterized. Coating composition was analyzed by thermogravimetric analysis (TG), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis. Scanning electron microscopy (SEM) was employed to study both the surface and the cross section morphology of the coatings, and the thicknesses (2â6 ÎŒm) of the obtained coatings were correlated with the initial ceramic content. Contact angle measurements, as a preliminary study to predict hypothetic protein attachment on the coatings, were performed for different samples and the influence of a second chitosan layer on top of the coatings was also tested. Finally, the electrochemical behavior of the coatings, evaluated by polarization curves in DMEM at 37 °C, was studied in order to assess the corrosion resistance provided by the n-TiO2/chitosan coatings
Peripheral myeloid-derived suppressor cells are good biomarkers of the efficacy of fingolimod in multiple sclerosis
Personalized medicine; Responder and non-responderMedicina personalizada; Respondedor y no respondedorMedicina personalitzada; Contestador i no contestadorBackground
The increasing number of treatments that are now available to manage patients with multiple sclerosis (MS) highlights the need to develop biomarkers that can be used within the framework of individualized medicine. Fingolimod is a disease-modifying treatment that belongs to the sphingosine-1-phosphate receptor modulators. In addition to inhibiting T cell egress from lymph nodes, fingolimod promotes the immunosuppressive activity of myeloid-derived suppressor cells (MDSCs), whose monocytic subset (M-MDSCs) can be used as a biomarker of disease severity, as well as the degree of demyelination and extent of axonal damage in the experimental autoimmune encephalomyelitis (EAE) model of MS. In the present study, we have assessed whether the abundance of circulating M-MDSCs may represent a useful biomarker of fingolimod efficacy in EAE and in the clinical context of MS patients.
Methods
Treatment with vehicle or fingolimod was orally administered to EAE mice for 14 days in an individualized manner, starting the day when each mouse began to develop clinical signs. Peripheral blood from EAE mice was collected previous to treatment and human peripheral blood mononuclear cells (PBMCs) were collected from fingolimod to treat MS patientsâ peripheral blood. In both cases, M-MDSCs abundance was analyzed by flow cytometry and its relationship with the future clinical affectation of each individual animal or patient was assessed.
Results
Fingolimod-treated animals presented a milder EAE course with less demyelination and axonal damage, although a few animals did not respond well to treatment and they invariably had fewer M-MDSCs prior to initiating the treatment. Remarkably, M-MDSC abundance was also found to be an important and specific parameter to distinguish EAE mice prone to better fingolimod efficacy. Finally, in a translational effort, M-MDSCs were quantified in MS patients at baseline and correlated with different clinical parameters after 12 months of fingolimod treatment. M-MDSCs at baseline were highly representative of a good therapeutic response to fingolimod, i.e., patients who met at least two of the criteria used to define non-evidence of disease activity-3 (NEDA-3) 12 months after treatment.
Conclusion
Our data indicate that M-MDSCs might be a useful predictive biomarker of the response of MS patients to fingolimod.This work was supported by the Instituto de Salud Carlos III (PI18/00357, RD16-0015/0019, PI21/00302, all co-funded by the European Union), the FundaciĂłn Merck Salud (FMS_2020_MS), Esclerosis MĂșltiple España (REEM-EME-S5 and REEM-EME_2018), ADEMTO, ATORDEM and AELEM. CC-T holds a predoctoral fellowship from the Instituto de Salud Carlos III (FI19/00132, co-funded by the European Union). LC and JG-A were hired under PI18/00357 and RD16/0015/0019, respectively. DC, MCO and IM-D were hired by SESCAM
Towards a new seismic hazard assessment in Spain
Seismic hazard is an evolving science that is fed by geological and seismological studies. As new data and models arise, the revision of hazard maps is compelling. Additionally, understanding the nature and the sources of the uncertainties involved in seismic hazard analyses is essential in order to reduce them. In this context, Spain is not an exception and a move towards a reassessment of the national hazard maps is pertinent. Several hazard-controlling factors needing to be updated and eventually revaluated are identified in this work in progress. The first one concerns the seismic catalogue. It must be homogenised, incorporating data from neighbouring countries and correlating magnitude scales for different regions and recording periods. A second factor refers to seismicity characterization by zoning and zoneless models: Neotectonic, seismological and other geological data that justify the development of a new zoning model for Spain and adjacent areas are disclosed. Revaluation of seismic areas that are traditionally considered as stable but show evidence of seismic activity at present and during Quaternary times needs to be considered. The interest of developing a neotectonic characterization of active faults is advanced. For zoneless models, the different elements that define the continuous spatial variation of the activity rate density have to be examined. For a zoneless model based on kernel functions, these elements would be the specific type of kernel function, the bandwidth and the reference years. A third factor requiring a modern analysis refers to the implementation of different strong motion prediction models. These include models based on local data and developed with data from other regions. Special attention is paid to the application of the next generation attenuation models originally developed for western North America to Spain. Criteria for selecting different models must be clearly and thoughtfully enumerated. The final goal of this work is to assess the variability of seismic hazard results to the new data and models that are becoming available. Such information will be of indubitable interest for forthcoming versions of the seismic code, national annexes of Eurocode 8 and research projects fomented by the Spanish Nuclear Security Counci
Bacterial Cellulose-Chitosan paper with antimicrobial and antioxidant activities
The production of paper-based bacterial cellulose-chitosan (BC-Ch) nanocomposites was accomplished following two different approaches. In the first, BC paper sheets were produced and then immersed in an aqueous solution of chitosan (BC-ChI); in the second, BC pulp was impregnated with chitosan prior to the production of paper sheets (BC-ChM). BC-Ch nanocomposites were investigated in terms of physical characteristics, antimicrobial and antioxidant properties, and the ability to inhibit the formation of biofilms on their surface. The two types of BC-Ch nanocomposites maintained the hydrophobic character, the air barrier properties, and the high crystallinity of the BC paper. However, BC-ChI showed a surface with a denser fiber network and with smaller pores than those of BC-ChM. Only 5% of the chitosan leached from the BC-Ch nanocomposites after 96 h of incubation in an aqueous medium, indicating that it was well retained by the BC paper matrix. BC-Ch nanocomposites displayed antimicrobial activity, inhibiting growth of and having a killing effect against bacteria Staphylococcus aureus and Pseudomonas aeruginosa and yeast Candida albicans. Moreover, BC-Ch papers showed activity against the formation of a biofilm on their surface. The incorporation of chitosan increased the antioxidant activity of the BC paper. Paper-based BC-Ch nanocomposites combined the physical properties of BC paper and the antimicrobial, antibiofilm, and antioxidant activities of chitosan
Improvements to Variable Elimination and Symbolic Probabilistic Inference for Evaluating Influence Diagrams
Este artĂculo aborda la optimizaciĂłn del orden de las combinaciones y marginalizaciones en Diagramas de Influencia, un problema NP-difĂcil clave para la eficiencia de su evaluaciĂłn. Se proponen dos mĂ©todos: una mejora del algoritmo de EliminaciĂłn de Variables y una adaptaciĂłn del algoritmo de Inferencia ProbabilĂstica SimbĂłlica para la evaluaciĂłn de Diagramas de Influencia. Ambos algoritmos pueden usarse tanto para la evaluaciĂłn directa de los diagramas como para el cĂĄlculo de mensajes entre cliques en la EvaluaciĂłn Diferida. Los experimentos comparan la eficiencia de estos mĂ©todos con varios Diagramas de Influencia de la literatura
Magnetic properties and giant magnetoresistance in melt-spun CoCu alloys
Magnetic, structural, and transport properties of as quenched and annealed Co10Cu90 samples have been investigated using x¿ray diffraction and a SQUID magnetometer. The largest value of MR change was observed for the as¿quenched sample annealed at 450°C for 30 min. The magnetic and transport properties closely correlate with the microstructure, mainly with Co magnetic particle size and its distribution. For thermal annealing the as quenched samples below 600°C, the Co particle diameters increase from 4.0 to 6.0 nm with a magnetoresistance (MR) drop from 33.0% to 5.0% at 10 K. Comparison with the theory indicates that the interfacial electron spin¿dependent scattering mechanism correlates with GMR for Co particle diameters up to about 6.0 nm
The physical oceanography of the transport of floating marine debris
Marine plastic debris floating on the ocean surface is a major environmental problem. However, its distribution in the ocean is poorly mapped, and most of the plastic waste estimated to have entered the ocean from land is unaccounted for. Better understanding of how plastic debris is transported from coastal and marine sources is crucial to quantify and close the global inventory of marine plastics, which in turn represents critical information for mitigation or policy strategies. At the same time, plastic is a unique tracer that provides an opportunity to learn more about the physics and dynamics of our ocean across multiple scales, from the Ekman convergence in basin-scale gyres to individual waves in the surfzone. In this review, we comprehensively discuss what is known about the different processes that govern the transport of floating marine plastic debris in both the open ocean and the coastal zones, based on the published literature and referring to insights from neighbouring fields such as oil spill dispersion, marine safety recovery, plankton connectivity, and others. We discuss how measurements of marine plastics (both in situ and in the laboratory), remote sensing, and numerical simulations can elucidate these processes and their interactions across spatio-temporal scales
No. 8 - The Cuban Embargo: Policy Outlook after 50 Years
Organized and sponsored by the Dean Rusk Center for International Law and Policy, The Cuban Embargo: Policy Outlook after 50 Years was a daylong conference exploring issues related to the impact of trade sanctions imposed by the United States on Cuba, pathways to lifting the embargo and potential U.S.-Cuba trade opportunities. Ambassador José R, Cabañas, the chief of mission at the Cuban Interests Section in Washinton, D.C., served as the keynote speaker for the event. The transcript of the conference proceedings has been edited for publication with the consent of the speakers
- âŠ