1,886 research outputs found

    Inlet protein aggregation: a new mechanism for lubricating film formation with model synovial fluids.

    Get PDF
    This paper reports a fundamental study of lubricant film formation with model synovial fluid components (proteins) and bovine serum (BS). The objective was to investigate the role of proteins in the lubrication process. Film thickness was measured by optical interferometry in a ball-on-disc device (mean speed range of 2-60 mm/s). A commercial cobalt-chromium (CoCrMo) metal femoral head was used as the stationary component. The results for BS showed complex time-dependent behaviour, which was not representative of a simple fluid. After a few minutes sliding BS formed a thin adherent film of 10-20 nm, which was attributed to protein absorbance at the surface. This layer was augmented by a hydrodynamic film, which often increased at slow speeds. At the end of the test deposited surface layers of 20-50 nm were measured. Imaging of the contact showed that at slow speeds an apparent 'phase boundary' formed in the inlet just in front of the Hertzian zone. This was associated with the formation of a reservoir of high-viscosity material that periodically moved through the contact forming a much thicker film. The study shows that proteins play an important role in the film-forming process and current lubrication models do not capture these mechanisms

    Wilson's disease: A patient undiagnosed for 18 years

    Get PDF
    Wilson's disease, an autosomal recessive disorder of copper metabolism, is the most common inherited hepatic disease in Hong Kong. Diagnosis is based on the presence of Kayser-Fleischer rings, typical neurological symptoms, and/or a low serum ceruloplasmin concentration (<0.20 g/L). Early detection and treatment protect patients and their presymptomatic siblings from devastating organ damage. The diagnosis of Wilson's disease may nonetheless be overlooked if only established clinical and laboratory tests are used as diagnostic criteria. We report diagnosis of the disorder using genetic analysis of ATP7B in a presymptomatic sibling who escaped diagnosis during family screening 18 years previously. The patient was 11 months old when family screening was performed following diagnosis of Wilson's disease in an elder sister. The boy was considered to be unaffected on the basis of laboratory results in the expected range: serum copper level, 4.6 μmol/L; serum ceruloplasmin level, 0.16 g/L; and 24-hour urinary copper excretion, 0.14 μmol/day. Molecular analysis of ATP7B was performed; it revealed that the two siblings shared the same compound heterozygous mutations (G943D and 2299delC). We recommend that molecular diagnosis is the only definitive means of diagnosing Wilson's disease in children younger than 1 year.published_or_final_versio

    Granulin-epithelin precursor is an oncofetal protein defining hepatic cancer stem cells

    Get PDF
    Background and Aims: Increasing evidence has suggested that hepatocellular carcinoma (HCC) might originate from a distinct subpopulation called cancer stem cells (CSCs), which are responsible for the limited efficacy of conventional therapies. We have previously demonstrated that granulin-epithelin precursor (GEP), a pluripotent growth factor, is upregulated in HCC but not in the adjacent non-tumor, and that GEP is a potential therapeutic target for HCC. Here, we characterized its expression pattern and stem cell properties in fetal and cancerous livers. Methods: Protein expression of GEP in fetal and adult livers was examined in human and mouse models by immunohistochemical staining and flow cytometry. Liver cancer cell lines, isolated based on their GEP and/or ATP-dependent binding cassette (ABC) drug transporter ABCB5 expression, were evaluated for hepatic CSC properties in terms of colony formation, chemoresistance and tumorigenicity. Results: We demonstrated that GEP was a hepatic oncofetal protein that expressed in the fetal livers, but not in the normal adult livers. Importantly, GEP+ fetal liver cells co-expressed the embryonic stem (ES) cell-related signaling molecules including β-catenin, Oct4, Nanog, Sox2 and DLK1, and also hepatic CSC-markers CD133, EpCAM and ABCB5. Phenotypic characterization in HCC clinical specimens and cell lines revealed that GEP+ cancer cells co-expressed these stem cell markers similarly as the GEP+ fetal liver cells. Furthermore, GEP was shown to regulate the expression of ES cell-related signaling molecules β-catenin, Oct4, Nanog, and Sox2. Isolated GEP high cancer cells showed enhanced colony formation ability and chemoresistance when compared with the GEP low counterparts. Co-expression of GEP and ABCB5 better defined the CSC populations with enhanced tumorigenic ability in immunocompromised mice. Conclusions: Our findings demonstrate that GEP is a hepatic oncofetal protein regulating ES cell-related signaling molecules. Co-expression of GEP and ABCB5 further enriches a subpopulation with enhanced CSC properties. The current data provide new insight into the therapeutic strategy. © 2011 Cheung et al.published_or_final_versio

    Copy number gain of granulin-epithelin precursor (GEP) at chromosome 17q21 associates with overexpression in human liver cancer

    Get PDF
    Background: Granulin-epithelin precursor (GEP), a secretory growth factor, demonstrated overexpression in various human cancers, however, mechanism remain elusive. Primary liver cancer, hepatocellular carcinoma (HCC), ranks the second in cancer-related death globally. GEP controlled growth, invasion, metastasis and chemo-resistance in liver cancer. Noted that GEP gene locates at 17q21 and the region has been frequently reported to be amplified in subset of HCC. The study aims to investigate if copy number gain would associate with GEP overexpression. Methods: Quantitative Microsatellite Analysis (QuMA) was used to quantify the GEP DNA copy number, and fluorescent in situ hybridization (FISH) was performed to consolidate the amplification status. GEP gene copy number, mRNA expression level and clinico-pathological features were analyzed. Results: GEP DNA copy number determined by QuMA corroborated well with the FISH data, and the gene copy number correlated with the expression levels (n = 60, r = 0.331, P = 0.010). Gain of GEP copy number was observed in 20% (12/60) HCC and associated with hepatitis B virus infection status (P = 0.015). In HCC with increased GEP copy number, tight association between GEP DNA and mRNA levels were observed (n = 12, r = 0.664, P = 0.019). Conclusions: Gain of the GEP gene copy number was observed in 20% HCC and the frequency comparable to literatures reported on the chromosome region 17q. Increased gene copy number contributed to GEP overexpression in subset of HCC. © Yung et al; licensee BioMed Central.published_or_final_versio

    Robot-assisted radical prostatectomy in Hong Kong: a review of 235 cases

    Get PDF
    published_or_final_versio

    Establishment and characterization of a novel primary hepatocellular carcinoma cell line with metastatic ability in vivo

    Get PDF
    BACKGROUND: Hepatocellular carcinoma (HCC) is a highly aggressive and heterogeneous disease. HCC cell lines established from different patients would be useful in elucidating the molecular pathogenesis. However, success of HCC primary culture establishment remains at low rate. We aim to establish and characterize HCC primary culture and the derived cell line. METHODS: Fresh tumor tissues were collected from 30 HCC patients. Culture conditions were optimized for the attachment and growth of the isolated hepatocytes. Granulin-epithelin precursor (GEP), a growth factor reported to associate with cancer stem cell properties, was examined by flow cytometry to elucidate its role on primary culture establishment. The primary cell line was characterized in detail. RESULTS: Cells isolated from 16 out of 30 HCC cases (53%) had viability more than 70% and were subject to subsequent in vitro culture. 7 out of 16 cases (44%) could give rise to cells that were able to attach and grow in culture. GEP expression levels significantly correlated with the viability of isolated hepatocytes and success rate of subsequent primary culture establishment. Cells from HCC patient 21 grew and expanded rapidly in vitro and was selected to be further characterized. The line, designated HCC21, derived from a Hong Kong Chinese female patient with HCC at Stage II. The cells exhibited typical epithelial morphology and expressed albumin, AFP and HBV antigens. The cell line was authenticated by short tandem repeat analysis. Comparative genome hybridization analysis revealed chromosomal loss at 1p35-p36, 1q44, 2q11.2-q24.3, 2q37, 4q12-q13.3, 4q21.21-q35.2, 8p12-p23, 15q11.2-q14, 15q24-q26, 16p12.1-p13.3, 16q, 17p, 22q and gain at 1q21-q43 in both HCC21 cells and the original clinical tumor specimen. Sequence analysis revealed p53 gene mutation. Subcutaneous injection of HCC21 cells into immunodeficient mice showed that the cells were able to form tumors at the primary injection sites and metastatic tumors in the peritoneal cavity. CONCLUSIONS: The newly established cell line could serve as useful in vitro and in vivo models for studying primary HCC that possess metastasis ability.published_or_final_versio

    Mitochondrial DNA Copy Number Is Associated with Breast Cancer Risk

    Get PDF
    Mitochondrial DNA (mtDNA) copy number in peripheral blood is associated with increased risk of several cancers. However, data from prospective studies on mtDNA copy number and breast cancer risk are lacking. We evaluated the association between mtDNA copy number in peripheral blood and breast cancer risk in a nested case-control study of 183 breast cancer cases with pre-diagnostic blood samples and 529 individually matched controls among participants of the Singapore Chinese Health Study. The mtDNA copy number was measured using real time PCR. Conditional logistic regression analyses showed that there was an overall positive association between mtDNA copy number and breast cancer risk (Ptrend = 0.01). The elevated risk for higher mtDNA copy numbers was primarily seen for women with <3 years between blood draw and cancer diagnosis; ORs (95% CIs) for 2nd, 3rd, 4th, and 5th quintile of mtDNA copy number were 1.52 (0.61, 3.82), 2.52 (1.03, 6.12), 3.12 (1.31, 7.43), and 3.06 (1.25, 7.47), respectively, compared with the 1st quintile (Ptrend = 0.004). There was no association between mtDNA copy number and breast cancer risk among women who donated a blood sample ≥3 years before breast cancer diagnosis (Ptrend = 0.41). This study supports a prospective association between increased mtDNA copy number and breast cancer risk that is dependent on the time interval between blood collection and breast cancer diagnosis. Future studies are warranted to confirm these findings and to elucidate the biological role of mtDNA copy number in breast cancer risk. © 2013 Thyagarajan et al

    Natural gaits of the non-pathological flat foot and high-arched foot

    Get PDF
    There has been a controversy as to whether or not the non-pathological flat foot and high-arched foot have an effect on human walking activities. The 3D foot scanning system was employed to obtain static footprints from subjects adopting a half-weight-bearing stance. Based upon their footprints, the subjects were divided into two groups: the flat-footed and the high-arched. The plantar pressure measurement system was used to measure and record the subjects' successive natural gaits. Two indices were proposed: distribution of vertical ground reaction force (VGRF) of plantar and the rate of the footprint areas. Using these two indices to compare the natural gaits of the two subject groups, we found that (1) in stance phase, there is a significant difference (p<0.01) in the distributions of VGRF of plantar; (2) in a stride cycle, there is also a significant difference (p<0.01) in the rates of the footprint areas. Our analysis suggests that when walking, the VGRF of the plantar brings greater muscle tension to the flat-footed while a smaller rate of the footprint areas brings greater stability to the high-arched.Comment: 8 pages, 4 figure

    Analyses of Ligand Binding to IP3 Receptors Using Fluorescence Polarization.

    Get PDF
    Fluorescence polarization (FP) can be used to measure binding of a small fluorescent ligand to a larger protein because the ligand rotates more rapidly in its free form than when bound. When excited with plane polarized light, the free fluorescent ligand emits depolarized light, which can be quantified. Upon binding, its rotation is reduced and more of the emitted light remains polarized. This allows FP to be used as a nondestructive assay of ligand binding. Here we describe a fast, high-throughput FP assay to quantify the binding of fluorescently labeled inositol 1,4,5-trisphosphate (IP3) to N-terminal fragments of the IP3 receptor. The assay is fast (1-6 h), it avoids use of radioactive materials and when measurements are performed at different temperatures, it can resolve Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) changes of ligand binding
    corecore