30 research outputs found

    The Leiognathus splendens complex (Perciformes: Leiognathidae) with the description of a new species, Leiognathus kupanensis Kimura and Peristiwady

    Full text link
    Taxonomic analysis of a group of morphologically similar ponyfishes (Perciformes: Leiognathidae) establishes the Leiognathus splendens complex comprising four valid species: L. jonesi James, 1971, widely distributed in the Indo-West Pacific, from Mauritius to Papua New Guinea, north to Hainan I. (China), and south to Brisbane, Australia; L. kupanensis sp. nov., currently known only from Kupang, Timor, Indonesia; L. rapsoni Munro, 1964, currently known only from India, Indonesia, and Papua New Guinea, and L. splendens Cuvier, 1829, widely distributed in the eastern Indian and western Pacific oceans, from India to Papua New Guinea, and from southern Japan to northern Australia. The L. splendens complex can be defined by the following combination of characters: body depth 42–60% of standard length; mouth protruding downward; slender, minute teeth uniserially on jaws; lower margin of orbit above the horizontal through the gape when mouth closed; breast almost completely scaled; lateral line complete, and a dark blotch on top of spinous dorsal fin. Diagnostic characters of the members are as follows: L. jonesi —anterior dorsolateral body surface with a semicircular naked area on nape, and a paler dark blotch on spinous dorsal fin; L. kupanensis —anterior dorsolateral body surface widely naked; L. rapsoni —cheek scaled; L. splendens —anterior dorsolateral body surface completely scaled and a jet black blotch on spinous dorsal fin.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41595/1/10228_2005_Article_283.pd

    Magnetic resonance imaging based noninvasive measurements of brain hemodynamics in neonates : A review

    No full text
    Perinatal disturbances of brain hemodynamics can have a detrimental effect on the brain's parenchyma with consequently adverse neurodevelopmental outcome. Noninvasive, reliable tools to evaluate the neonate's brain hemodynamics are scarce. Advances in magnetic resonance imaging have provided new methods to noninvasively assess brain hemodynamics. More recently these methods have made their transition to the neonatal population. The aim of this review is twofold. Firstly, to describe these newly available noninvasive methods to investigate brain hemodynamics in neonates. Secondly, to discuss the results that were obtained with these techniques, identifying both potential clinical applications as well as gaps of knowledge
    corecore